Главная > Курс физики (Геворкян Р. Г.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Часть II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Глава 1. ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ И ТЕРМОДИНАМИКИ

§ 1. ТЕПЛОВОЕ ДВИЖЕНИЕ

Атомы и молекулы, из которых состоят различные вещества, находятся в состоянии непрерывного теплового движения.

Первой особенностью теплового движения является его хаотичность; ни одно направление движения молекул не выделяется среди других направлений. Поясним это: если проследить за движением одной молекулы, то с течением времени вследствие столкновений с другими молекулами величина скорости и направление движения этой молекулы изменяются совершенно беспорядочно; далее, если в какой-нибудь момент времени зафиксировать скорости движения всех молекул, то по направлению эти скорости оказываются равномерно разбросанными в пространстве, а по величине — имеют самые разнообразные значения.

Второй особенностью теплового движения является существование обмена энергией между молекулами, а также между различными видами движения; энергия поступательного движения молекул может переходить в энергию их вращательного или колебательного движения и обратно.

Обмен энергией между молекулами, а также между различными видами их теплового движения происходит благодаря взаимодействию молекул (столкновениям между ними). На больших расстояниях силы взаимодействия между молекулами очень малы и ими можно пренебрегать; на малых расстояниях эти силы оказывают заметное действие. В газах молекулы большую часть времени пребывают на сравнительно больших расстояниях друг от друга; лишь в течение весьма малых промежутков времени, оказавшись достаточно близко друг к другу, они взаимодействуют между собой, изменяя скорости своих движений и обмениваясь энергиями. Такие кратковременные взаимодействия молекул называются столкновениями. Различают два вида столкновений между молекулами:

1) столкновения, или удары, первого рода, в результате которых изменяются только скорости и кинетические энергии соударяющихся частиц; состав или структура самих молекул не испытывают никаких изменений;

2) столкновения, или удары, второго рода, в результате которых происходят изменения внутри молекул, например изменяется их состав или относительное расположение атомов внутри этих молекул. При этих столкновениях часть кинетической энергии молекул затрачивается на совершение работы против сил, действующих внутри молекул. В некоторых случаях, наоборот, может выделиться некоторое количество энергии за счет уменьшения внутренней потенциальной энергии молекул.

В дальнейшем мы будем иметь в виду только столкновения первого рода, происходящие между молекулами газов. Обмен энергиями при тепловых движениях в твердых и жидких телах является более сложным процессом и рассматривается в специальных разделах физики. Столкновения второго рода используются для объяснения электропроводности газов и жидкостей, а также теплового излучения тел.

Рис. 11.1

Для описания каждого вида теплового движения молекул (поступательного, вращательного или колебательного) необходимо задать ряд величин. Например, для поступательного движения молекулы необходимо знать величину и направление ее скорости. Для этой цели достаточно указать три величины: значение скорости и два угла и между направлением скорости и координатными плоскостями или же три проекции скорости на координатные оси: (рис. 11.1, а). Заметим, что эти три величины независимы: при данном углы и могут иметь любые значения и, наоборот, при заданном, например, угле значения и могут быть любыми. Точно так же задание определенного значения не накладывает никаких ограничений на значения наоборот. Таким образом, для описания поступательного движения молекулы в пространстве необходимо задать три независимые друг от друга величины: и или Энергия, поступательного движения молекулы будет состоять из трех независимых компонент:

Для описания вращательного движения молекулы вокруг своей оси необходимо указать величину и направление угловой скорости вращения , т. е. опять-таки три независимые друг от друга величины: и в или (рис. II. 1, б). Энергия вращательного движения молекулы также будет состоять из трех независимых компонент:

где моменты инерции молекулы относительно трех взаимно перпендикулярных координатных осей. У одноатомной молекулы все эти моменты инерции очень малы, поэтому энергией ее вращательного движения пренебрегают. У двухатомной молекулы (рис. II.1, в) пренебрегают энергией вращательного движения относительно оси, проходящей через центры атомов, поэтому, например,

Для описания колебательного движения атомов в молекуле необходимо сначала разделить это движение на простые колебания, происходящие вдоль определенных направлений. Сложное колебание удобно разложить на простые прямолинейные колебания, происходящие по трем взаимно перпендикулярным направлениям. Эти колебания независимы друг от друга, т. е. частоте и амплитуде колебаний в одном из этих направлений могут соответствовать любая частота и амплитуда колебаний в других направлениях. Если каждое из этих прямолинейных колебаний гармоническое, то его можно описать при помощи формулы

Таким образом, для описания отдельного прямолинейного колебания атомов необходимо задать две величины: частоту колебания со и амплитуду колебания Эти две величины также независимы друг от друга: при данной частоте амплитуда колебания не связывается никакими условиями, и наоборот. Следовательно, для описания сложного колебательного движения молекулы вокруг точки (т. е. своего положения равновесия) необходимо задать шесть независимых друг от друга величин: три частоты и амплитуды колебании по трем взаимно перпендикулярным направлениям.

Независимые друг от друга величины, определяющие состояние данной физической системы, называются степенями свободы этой системы. При изучении теплового движения в телах (для расчета энергии этого движения) определяют число степеней свободы каждой молекулы этого тела. При этом подсчитываются только те степени свободы, между которыми происходит обмен энергиями. Молекула одноатомного газа обладает тремя степенями свободы поступательного движения; двухатомная молекула имеет три степени свободы поступательного и две степени свободы вращательного движения (третья степень свободы, соответствующая вращению вокруг оси, проходящей через центры атомов, не учитывается). Молекулы, содержащие три

атома и больше, обладают тремя поступательными и тремя вращательными степенями свободы. Если в обмене энергиями участвует и колебательное движение, то на каждое независимое прямолинейное колебание добавляют две степени свободы.

Рассматривая раздельно поступательное, вращательное и колебательное движения молекул, можно найти среднюю энергию, которая приходится на каждую степень свободы этих видов движения. Рассмотрим сначала поступательное движение молекул: допустим, молекула обладает кинетической энергией масса молекулы). Сумма есть энергия поступательного движения всех молекул. Разделив на степеней свободы, получим среднюю энергию, приходящуюся на одну степень свободы поступательного движения молекул:

Так же можно рассчитать средние энергии, приходящиеся на одну степень свободы вращательного евращ и колебательного еколеб движений. Если каждая молекула обладает степенями свободы поступательного, степенями свободы вращательного и степенями свободы колебательного движений, то полная энергия теплового движения всех молекул будет равна

В теоретической физике (где разработаны основы молекулярно-кинетической теории) установлено, что средние энергии всех видов теплового движения молекул связаны с температурой, причем для разреженных газов с достаточным приближением можно полагать, что на каждую степень свободы поступательного и вращательного движений молекул в среднем приходится одна и та же энергия, равная

где (постоянная Больцмана), абсолютная температура газа. Связь между средней энергией простого колебательного движения молекул (т. е. происходящего в одном из направлений) и абсолютной температурой имеет более сложный вид:

где (постоянная Планка), частота колебаний; постоянная Больцмана. При высоких температурах и малых частотах колебаний, когда произведение значительно больше, чем можно разложить экспоненциальную функцию в ряд и тогда формула (1.8) дает приближенное выражение Так как простое колебание обладает двумя степенями свободы, то на каждую степень свободы придется энергия, равная Таким образом, при высоких температурах и малых частотах колебаний на каждую степень свободы колебательного движения приходится столько же энергии

сколько и на одну степень свободы поступательного или вращательного движения. При таких условиях можно очень просто рассчитать суммарную энергию беспорядочного движения частиц системы, содержащей молекул:

где число степеней свободы, которым обладает одна молекула данной системы.

1
Оглавление
email@scask.ru