Главная > Курс физики. Том III. Оптика, атомная физика, ядерная физика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 69. Сверхтонкая структура спектральных линий

До сих пор речь шла об особенностях структуры спектров, объясняющихся свойствами электронного облака атома.

Однако уже давно отмечались детали в структуре спектров, не объяснимые с этой точки зрения. Сюда относится сложная структура отдельных линий ртути и обнаруженная в 1928 г. Л. Н. Добрецовым и А. Н. Терениным двойная структура каждой из двух желтых линий натрия. В последнем случае расстояние между компонентами составляло всего 0,02 А, что в 25 раз меньше радиуса атома водорода. Указаные детали строения спектра получили название сверхтонкой структуры (рис. 266).

Рис. 266. Сверхтонкая структура натриевой линии.

Для ее исследования обычно применяются эталон Фабри — Перо и другие приборы с большой разрешающей способностью. Малейшее расширение спектральных линий, вызванное взаимодействием атомов между собой или их тепловым движением, приводит к слиянию компонент сверхтонкой структуры. Поэтому в настоящее время широко применяется метод молекулярных пучков, впервые предложенный Л. Н. Добрецовым и А. Н. Терениным. При этом методе наблюдается свечение или поглощение пучка атомов, летящих в вакууме.

В 1924 г. японский физик Нагаока сделал первую попытку связать сверхтонкую структуру с ролью атомного ядра в спектрах. Эта попытка была сделана в очень неубедительной форме и вызвала совершенно издевательскую критику со стороны известного

спектроскописта И. Рунге. Он приписал каждой букве фамилии Нагаока ее порядковое число в алфавите и показал, что произвольная комбинация этих чисел между собой дает такое же хорошее согласие с опытными данными, как и теория Нагаоки.

Однако Паули вскоре установил, что в идеях Нагаоки было зерно истины и что сверхтонкая структура действительно непосредственно связана со свойствами атомного ядра.

Следует различать два типа сверхтонкой структуры. Первому типу соответствует сверхтонкая структура, одинаковая по числу компонент для всех линий спектра данного элемента. Возникновение этой сверхтонкой структуры связано с наличием изотопов. При исследовании спектра одного выделенного изотопа остается только одна компонента сверхтонкой структуры данного типа. Для легких элементов возникновение такой сверхтонкой структуры объясняется простыми механическими соображениями. В § 58, рассматривая атом водорода, мы считали ядро неподвижным. На самом деле ядро и электрон вращаются вокруг общего центра массы (рис. 267). Расстояние от ядра до центра масс очень невелико, оно равно примерно где расстояние до электрона, масса электрона, масса ядра.

Рис. 267. Вращение ядра и электрона вокруг общего центра масс.

В результате энергия атома приобретает несколько иное значение, что приводит к изменению постоянной Ридберга

где значение постоянной Ридберга, соответствующее неподвижному ядру

Таким образом, зависит от а следовательно, и частоты линий должны зависеть от Последнее обстоятельство и послужило основой для спектроскопического открытия тяжелого водорода В 1932 г. Юри, Мэффи и Бриквид обнаружили в спектре водорода слабые спутники линии серии Бальмера.

Предположив, что эти спутники соответствуют линиям тяжелого изотопа водорода с атомным весом, равным двум, они вычислили, пользуясь (1), длины волн и сравнили их с экспериментальными данными.

Согласно формуле (1) у элементов со средними и большими атомными весами изотопический эффект должен быть исчезающе мал.

Этот вывод подтверждается экспериментально для элементов со средними весами, но, как это ни странно, находится в резком противоречии с данными для тяжелых элементов. У тяжелых элементов явно наблюдается изотопическая сверхтонкая структура. Согласно имеющейся теории в данном случае играет роль уже не масса, а конечные размеры ядра.

Определение метра в системе СИ (ГОСТ 9867-61) учитывает роль сверхтонкой структуры указанием изотопа криптона: «Метр — длина, равная 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями атома криптона 86».

Второй тип сверхтонкой структуры не связан с наличием смеси изотопов; в частности, сверхтонкая структура данного типа наблюдается у висмута, имеющего только один изотоп.

Второй тип сверхтонкой структуры имеет различный вид у различных спектральных линий одного и того же элемента. Второй тип сверхтонкой структуры объяснен Паули, приписавшим ядру собственный механический вращательный момент (спин), кратный

Рис. 268. Происхождение сверхтонкой структуры желтых линий натрия.

Полный вращательный момент атома равен векторной сумме ядерного момента и момента электронной оболочки. Полный вращательный момент должен быть квантован, как все атомные моменты. Поэтому опять возникает пространственное квантование — дозволены только определенные ориентации вращательного момента ядра по отношению к вращательному моменту электронной оболочки. Каждой ориентации соответствует определенный подуровень энергии атома Как и в мультиплетах, здесь различным подуровням соответствует различный запас магнитной энергии атома. Но масса ядра в тысячи раз больше массы электрона, и поэтому магнитный момент ядра примерно в такое же число раз меньше магнитного момента электрона. Таким образом, изменения ориентации ядерного момента должны вызывать лишь очень небольшие изменения энергии, проявляющиеся в сверхтонкой структуре линий. На рис. 268 изображены схемы сверхтонкой структуры натрия. Справа от каждого уровняэнергиистоитчислоя, характеризующее полный вращательный момент. Спин атомного ядра натрия оказался равным

Как видно из рисунка, каждая из желтых линий натрия состоит из большого числа компонент, которые при недостаточном разрешении выглядят, как два узких дублета. Определенные из анализа сверхтонкой структуры вращательные моменты ядер (в частности, для азота оказались в противоречии с гипотезой о существовании электронов в составе ядра, что и было использовано Д. Д. Иваненко для утверждения, что ядра состоят из протонов и нейтронов (§ 86).

В дальнейшем (с 1939 г.) для определения ядерных моментов стали применять гораздо более точный радиоспектрографический метод Раби.

Радиоспектроскопическая схема Раби для определения ядерных магнитных моментов представляет собой как бы две последовательно расположенные установки Штерна — Герлаха (стр. 317) с взаимно противоположными направлениями неоднородных магнитных полей. Молекулярный пучок пронизывает последовательно обе установки. Если в первой установке молекулярный пучок отклоняется, например, направо, то во второй установке он отклоняется налево. Действие одной установки компенсирует действие другой. Между этими двумя установками расположено устройство, нарушающее компенсацию. Оно состоит из электромагнита, создающего однородное магнитное поле, и электродов, соединенных с генератором высокочастотных колебаний. Однородное магнитное поле направлено параллельно магнитному полю в первой установке Штерна — Герлаха.

Частица с магнитным моментом направленным под углом к направлению поля обладает потенциальной энергией (т. II, § 58). Этим же углом определяется величина отклонения пучка в первой установке Штерна — Герлаха. Под действием высокочастотного поля ориентация магнитного момента может измениться и магнитная энергия станет равной Это изменение магнитной энергии должно быть равно энергии фотона, вызвавшего переход (абсорбция или вынужденный переход, § 73):

Возможные значения определяются законом пространственного квантования. Отклонение пучка во второй установке зависит от величины угла Поскольку угол не равен углу это отклонение не будет равно отклонению в первой установке и компенсация нарушится. Нарушение компенсации отклонений наблюдается только при частотах, удовлетворяющих указанному соотношению; иначе говоря, наблюдаемый эффект является резонансным эффектом, что чрезвычайно повышает точность метода. По измеренным частотам с большой точностью вычисляются магнитные моменты ядер

Однако обычная оптическая спектроскопия сохраняет свое значение в полной мере для исследования изотопических эффектов, где радиоспектроскопия принципиально неприменима. Изотопические эффекты представляют особый интерес для теории ядерных сил и внутриядерных процессов.

За последние годы спектроскописты опять вернулись к тщательному изучению спектра водорода. Спектр водорода оказался буквально неисчерпаемым источником новых открытий.

В § 59 уже говорилось, что при исследовании аппаратурой с большой разрешающей способностью каждая линия спектра водорода оказывается двой ной. Долгое время считали, что теория этих тонких деталей спектра водорода находится в прекрасном согласии с опытными данными. Но, начиная с 1934 г., спектроскописты стали осторожно указывать на наличие небольших расхождений между теорией и опытом. Расхождения лежали в пределах точности измерений. О малости эффектов можно судить по следующим цифрам: линия согласно теории, должна в основном состоять из двух линий со следующими волновыми числами: 15233,423 и Теоретическая разность волновых чисел составляет всего т. е. тысячную долю процента от каждого вол нового числа. Эксперимент дал для этой разности величину, примерно на 2% меньшую Майкельсон в свое время говорил, что «мы должны искать наши будущие открытия в шестом десятичном знаке». Здесь речь идет о расхождении в восьмом десятичном знаке. В 1947 г. Лэмб и Ризерфорд вернулись к этой же задаче, но уже с использованием последних достижений техники физического эксперимента. Старая теория приводила к схеме нижних энергетических уровней для линии изображенной на рис. 269.

Рис. 269. Сдвиг энергетического уровня водорода вследствие взаимодействия электрона о вакуумом»

Согласно этой схеме расстояние между уровнями и атома водорода равно а уровень совпадает по высоте с уровнем

Волновое число соответствует радиоволне с длиной волны 2,74 см. Развитие микроволновой техники делает возможным измерение таких длин волн с точностью порядка

Лэмб и Ризерфорд, воздействуя радиоволнами на возбужденные атомы водорода, переводили их из состояния При этом обнаружилось совершенно отчетливо, что уровень на

выше уровня Этот сдвиг составляет почти 10% от длины радиоволны и, конечно, далеко превышает возможные ошибки опыта.

Основное преимущество данного радиоспектроскопического метода состоит в том, что здесь непосредственно определяется искомая величина, в то время как принципиальный недостаток обычного оптического метода заключался в том, что искомая величина определялась как малая разность двух очень больших чисел (волновые числа компонент это приводило к исключительно высоким требованиям к точности. Полученный результат вызвал огромный интерес теоретиков. Оказалось, что сдвиг -уровня связан с взаимодействием электрона с «вакуумом», который ни в коей мере нельзя рассматривать как пустоту в буквальном смысле слова.

1
Оглавление
email@scask.ru