Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 111. Превращения элементарных частицВ обычных химических реакциях нейтральные атомы и ионы, несмотря на их сложную структуру, выступают как «химически элементарные» частицы. Аналогично и в ядерных реакциях нуклоны, мезоны и другие частицы выступают как элементарные, что, конечно, не означает отсутствия у них сложной структуры, которая пока оста ется неизвестной. Одним из фундаментальных свойств элементарных частиц является возможность их рождения и поглощения в различных взаимодействиях. Существует огромное число процессов, в которых час тицы излучаются и поглощаются, превращаются в другие частицы. Так, электрон и позитрон могут превращаться в фотоны, при торможении частицы в силовом поле рождаются фотоны, Многие из элементарных частиц (см. таблицу на стр. 504) самопроизвольно превращаются в другие частицы. Этот процесс хотя и носит название распада, но его нельзя понимать как распад системы на составные части: образующиеся частицы являются не простыми структурными единицами исходной, а рождаются заново. Тем не менее взаимная превращаемость частиц, обусловливающая зависимость их свойств, указывает на то, что в будущем некоторые частицы, которые в настоящее время считаются элементарными, возможно, окажутся отнесенными к сложным. 1. «Аннигиляция» и превращение у-фотона в пару: частица-античастица. Явление «аннигиляции» электрона и позитрона, открытое в 1934 г. (§ 91), исторически было первым явлением, доказавшим превращаемость элементарных частиц. В последующие годы обнаружилось, что превращение в у-фотоны наблюдается для всех заряженных частиц и античастиц: Как и при всех процессах, при «аннигиляции» сохраняются: масса, энергия, количество движения и момент количества движения. Полевая масса образующихся фотонов Энергия каждого из двух фотонов, образующихся при аннигиляции, равна собственной энергии частицы или античастицы (см. скан) Количество фотонов, образованных при аннигиляции пары, не всегда равно двум. В некоторых случаях возникновение двух фотонов оказывается невозможным, так как это повлекло бы к невыполнению закона сохранения момента количества движения. В качестве примера рассмотрим распад позитрония — системы, состоящей из электрона и позитрона, вращающихся друг относительно друга. Эта система имеет небольшое время жизни и аннигилирует, превращаясь в фотоны. Основное состояние позитрония в зависимости от взаимной ориентации спинов электрона и позитрона может быть двух типов: с суммарным спином нуль (парапозитро-ний) и с суммарным спином, равным единице (ортопозитроний). В случае ортопозитрония согласно закону сохранения момента количества движения момент системы фотонов, образовавшихся при аннигиляции, тоже должен быть равным единице. Но в квантовой механике доказывается, что система двух фотонов не может иметь момент, равный единице. Следовательно, ортопозитроний может аннигилировать только с образованием трех (или другого нечетного числа) фотонов. В случае парапозитрония закон сохранения момента разрешает двухфотонную аннигиляцию и запрещает трехфотонную. Аннигиляция нуклонов редко происходит с превращением их в два у-фотона. Еще задолго до открытия антипротона и антинейтрона теоретически было предсказано и в 1956-1957 гг. подтверждено экспериментально, что в тысячи раз более вероятна аннигиляция нуклона и антинуклона с превращением их в два нейтральных
Процесс, по существу обратный аннигиляции,— превращение у-фотона в поле ядра в пару частица-античастица — наблюдается при пороговых значениях энергии у-фотона, равных сумме собственных энергий частицы и античастицы (т. е. при значениях
(при Так, например, возникновение пары электрон-позитрон возможно при 2. Превращения нуклонов. Уже в начале 30-х годов, когда обнаружилось, что ядра состоят из протонов и нейтронов, процесс нейтрона в протон (при Прямое экспериментальное подтверждение взаимопревращаемости нейтрона и протона было получено в 1946 г. в опытах по рассеянию нуклонов с энергией порядка сотен мегаэлектроновольт. Эти опыты показали, что чем больше энергия бомбардирующих мишень нейтронов, тем больше наблюдается протонов, движущихся от мишени в том же направлении (рис. 410).
Рис. 410. Наблюдаемые картины рассеяния нуклонов при энергиях налетающих на мишень частиц порядка
Рис. 411. Картины рассеяния, которые должны были бы наблюдаться, если бы не происходило взаимопревращения нуклонов. Вместе с тем, если бы нейтроны не превращались в протоны, то они выбивали бы протоны из ядер мишени главным образом в перпендикулярном направлении (рис. 411). Из законов сохранения энергии и количества движения следует, что при упругом соударении частиц равной массы, когда одна из них до удара была в покое, частицы должны разлетаться (если не учитывать изменения массы со скоростью) под прямым углом, причем начальная скорость ударяющей частицы частицами скоростях
Рис. 412. Масса покоя нейтрона несколько превышает массу покоя протона. Разность их энергий покоя
Экспериментально радиоактивное превращение нейтронов в протоны было подтверждено и изучено в 1950 г., причем было установлено, что среднее время жизни Превращение нейтрона в протон может происходить также вследствие захвата позитрона нейтроном:
Утверждение, что превращения (11) и (12) должны сопровождаться выбросом антинейтрино суммарный спин нейтрона и позитрона в уравнении (12), равный единице при параллельной ориентации их спинов или же нулю при антипараллельной, может сохраниться только в том случае, если наряду с протоном возникает еще одна частица со спином Следует обратить внимание на то, чем отличается уравнение (12) от (11): по (11) происходит возникновение (излучение) электрона, по (12) — исчезновение (поглощение) позитрона. Каждое из этих двух превращений В отличие от нейтронов свободные протоны совершенно устойчивы. Превращение их в нейтроны энергетически невозможно, однако эти превращения могут иметь место, когда протону сообщена достаточная энергия извне или когда протоны, находясь в ядре, имеют избыточную энергию кулоновского отталкивания. Превращение протона в нейтрон сопровождается выбросом позитрона и нейтрино:
или же происходит вследствие захвата электрона протоном:
Легко видеть, что уравнение (14), которое описывает захват электрона ядром (§ 92, 93), получается из (13) транспозицией позитрона в электрон. Уравнение (13) описывает процесс, обратный распаду нейтрона (11), с транспозицией электрона и антинейтрино в античастицы. Таким образом, из факта, что в сравнении с протоном нейтрон имеет несколько большую массу (а стало быть, и большую собственную энергию), оказалось возможным предугадать ряд ядерных превращений. В честь Энрико Ферми, разработавшего детальную теорию и 3. Виртуальный обмен пионами (и объяснение магнитных моментов нуклонов). Фоторасщепление нуклонов. Особое значение для ядерной физики имеет предполагаемый (вернее, возможный, виртуальный) обмен заряженными и нейтральными высказанных еще в 1934-1935 гг. И. Е. Таммом, Д. Д. Иваненко и с особой убедительностью японским физиком Юкава, считают, что подобно фотонам электромагнитного поля, которые испускаются и поглощаются электронами и позитронами,
Эти превращения, однако, существенно отличаются от всех описанных выше, во-первых, тем, что, происходя непрерывно, они в действительности могут оставаться незавершенными — нуклон испускает мезон и тут же снова поглощает его; во-вторых, тем, что в расщепленном состоянии, когда испущен и еще не поглощен обратно мезон, нуклоны имеют свойства «идеальных» ядерных частиц; так, «идеальный протон» имеет магнитный момент, точно равный ядерному магнетону, а «идеальный нейтрон» лишен магнитного момента. Реальные свойства нуклонов и взаимодействие между ними рассматривают как следствие виртуального испускания и поглощения О трактовке ядерных сил на основе процессов Юкава (7) рассказано в следующем параграфе; здесь мы рассмотрим только объяснение величины магнитных моментов нуклонов. Можно было бы ожидать, что магнитный момент протона определяется формулой, аналогичной формуле для магнитного момента электрона:
Этот магнитный момент, т. е. магнитный момент, который во столько раз меньше магнетона Бора, во сколько раз масса протона больше массы электрона, называют ядерным магнетоном. Экспериментальные исследования показали, однако, что магнитный момент протона больше ожидавшегося теоретически почти в 3 раза, точнее:
Как показали эксперименты, нейтрон, несмотря на отсутствие заряда, имеет магнитный момент, направленный, как и у электрона, противоположно механическому моменту и численно равный почти двум ядерным магнетонам, точнее:
Согласно первому из уравнений (15) каждый протон некоторое короткое время является идеальным протоном (левая часть уравнения), а испустив положительный мезон, он же короткое время является идеальным нейтроном (правая часть уравнения). В целом эти непрерывно следующие одна за другой перезарядки определяют свойства реального протона. Таким образом, нуклон находится как бы в прилегающей к нему атмосфере заряда, плотность которого определяется временем пребывания около нуклона Уравнение (15) позволяет дать некоторое объяснение наблюдаемым значениям магнитных моментов нуклонов. Допустим, что
где Магнитный момент заряженных
должен во столько раз превышать ядерный магнетон Следовательно,
Это выражение для Трактуя аналогично происхождение магнитного момента нейтрона, остающегося
Сопоставляя это выражение для отрицательного магнитного момента нейтрона с наблюдаемым в действительности Собственная энергия заряженных протона отличаются только на
происходит при таких пороговых значениях энергии у-фотона, которые превышают собственную энергию пиона на величину энергии неизбежного (по сохранению импульса) движения образовавшихся частиц. Превращения (19) изучены в опытах с тормозными у-фотонами (при Аналогично (19) объясняется порождение пионов при столкновении нуклонов (с энергией
4. Превращения мезонов и гиперонов. Изотопический спин. Странность. Несохранение четности. Многочисленные превращения мезонов и гиперонов: их спонтанный распад, рождение при столкновениях нуклонов, фоторождение — теоретически объяснены применением методов квантовой механики к этим явлениям. Экспериментальные данные в этой области, более подробные, чем сообщенные выше, представляют интерес только в связи с расчетными выводами, пояснение которых потребовало бы слишком много времени и места. Но в 1956-1957 гг. обнаружилось, что некоторые из относящихся сюда фактов требуют существенного уточнения теории; поэтому, хотя для их понимания нужно основательное знакомство с математическим аппаратом квантовой механики, ниже сделана попытка дать о них хотя бы приблизительное представление. Согласно современным представлениям все взаимодействия между элементарными частицами можно разделить на три типа: 1) электромагнитные взаимодействия (по Дираку); 2) слабые взаимодействия нуклона с легкими частицами (по Ферми), сюда же относятся взаимодействия, ответственные за распад мезонов и гиперонов; 3) сильные взаимодействия между нуклонами и
Продолжительность процессов, связанных с каждым из этих видов взаимодействия, определяется, конечно, не только типом взаимодействия, но в сильной степени зависит от величины освобождающейся энергии и от других факторов. Чем больше энергетический эффект, тем быстрее проходит процесс. Учет всех наиболее важных факторов позволил теоретически точно объяснить, а во многих случаях и предсказать среднее время жизни нестабильных частиц. Но для тяжелых мезонов и гиперонов, возникающих при столкновении пионов большой энергии (порядка Некоторое объяснение аномально больших времен жизни странных частиц, а также экспериментально установленного факта их «совестных рождений» было отчасти получено в результате развития теории изотопического спина. Представление об изотопическом спине было введено в ядерную физику еще в 1932 г. Гейзенбергом с целью волномеханического описания свойств протона и нейтрона как двух состояний одной частицы — нуклона; в На электроны, позитроны, Для нуклонов и
где Отсюда получается:
Итак, в формализме изотопического спина протон и нейтрон являются двумя квантовыми состояниями (зарядовым дублетом) одной частицы — нуклона, причем эти два состояния нуклона различаются значениями проекции изотопического спина и антипараллельной ориентаций изотопического спина по отношению к любой выбранной в изотопическом пространстве оси При всех процессах, проходящих с сильным взаимодействием, (например, при столкновениях нуклонов с возникновением пионов), суммарный изотопический спин системы сохраняется. Для тяжелых мезонов и гиперонов соотношение (21) оказалось необходимым дополнить еще одним числом
Для нуклонов и пионов В соответствии с (22) найдено, что (см. скан) В реакциях при сильном взаимодействии суммарная странность частиц сохраняется, что следует из выражения (22), так как в этом случае сохраняются например, в следующих реакциях при энергиях пионов
По той же причине невозможна (и действительно не была наблюдена) реакция При фоторождении гиперонов (которое было экспериментально осуществлено в 1957 г. при энергии у-фотонов порядка
После того как была найдена и введена в аппарат волномеханических расчетов величина странности, ход процессов, приводящих к образованию гиперонов и Действительно, распад частицы с не равной нулю странностью на частицы, суммарная странность которых равна нулю (нуклоны, Недавно было обнаружено, что слабые взаимодействия нарушают еще один закон сохранения — «закон сохранения четности», выполнение которого с первых лет развития квантовой механики считалось обязательным для любых взаимодействий, в том числе и слабых. В квантовой механике термином «четность» обозначается коэффициент С в выражении преобразования волновой функции
По выводам квантовой механики в природе осуществляются только два класса состояний: четные должна иметь ту же четность, что и волновая функция, описывающая состояние исходных частиц; при этом четность системы невзаимодействующих частиц равна произведению четностей этих частиц. Опыты, приведшие к отказу от закона сохранения четности в слабых взаимодействиях, заключались в наблюдении распадов Было установлено, что
Четность Некоторое время господствовало предположение, что имеются два рода В связи с этим в 1956 г. китайские физики-теоретики Ли Чжэн-дао и Ян Чжень-нин, работающие в США, выдвинули предположение, что в ядерных процессах, обусловленных слабыми взаимодействиями, четность не сохраняется. (В области сильных взаимодействий сохранение четкости строго подтверждается всей совокупностью фактов.) Для проверки этого предположения Ли и т. е. обнаружилось явное нарушение закона сохранения четности, который около 30 лет всеми физиками признавался верным для всех процессов. В 1957-1959 гг. в разных странах был проведен ряд экспериментов, доказавших, что в различных процессах, обусловленных слабым взаимодействием (при распаде пионов, мюонов, В связи с этим в настоящее время оживленно обсуждаются возможные пути уточнения теории.
|
1 |
Оглавление
|