Главная > Теория графов. Алгоритмический подход
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. Нахождение сильных компонент

Сильная компонента графа была определена в предыдущей главе как максимальный сильно связный подграф графа Поскольку в сильно связном графе произвольная вершина достижима из любой другой вершины то в ориентированном

графе существует одна и только одна содержащая данную вершину В самом деле, если бы вершина принадлежала двум или большему числу сильных компонент, то существовал бы путь из любой вершины одной в произвольную вершину другой следовательно, объединение этих сильных компонент было бы сильно связным графом, что противоречит определению

Если вершина одновременно является начальной и конечной вершиной пути, то множество вершин, существенных относительно этих двух идентичных концов (т. е. множество вершин некоторого цикла, содержащего совпадает с пересечением Поскольку все эти существенные вершины достижимы из кроме того, из каждой такой вершины достижима вершина то все они взаимно достижимы. Более того, если нет другой вершины, существенной относительно концов то множество которое может быть построено с использованием соотношений (2.1) и (2.2), однозначно определяет графа содержащую вершину

Если эти вершины удалить из графа то в оставшемся порожденном подграфе можно таким же способом выделить новую содержащую Эту процедуру можно повторять до тех пор, пока все вершины графа не будут сгруппированы в соответствующие После завершения этой процедуры граф будет разбит на свои сильные компоненты [3].

Граф определяется так: каждая его вершина представляет множество вершин некоторой сильной компоненты графа дуга существует в тогда и только тогда, когда в существует дуга такая, что принадлежит компоненте, соответствующей вершине компоненте, соответствующей вершине х. Граф называют конденсацией графа

Совершенно очевидно, что конденсация не содержит циклов, поскольку наличие цикла означает, что любые вершины этого цикла взаимно достижимы, а поэтому совокупность всех вершин цикла принадлежит некоторой в следовательно, содержится в графа что противоречит определению конденсации, в силу которого вершины из соответствуют в

3.1. Пример

Для графа приведенного на рис. 2.2, найти сильные компоненты и построить конденсацию

Найдем в содержащую вершину

Рис. 2.2. Граф

Рис. 2.3. G - конденсация графа

Из соотношений (2.1) и (2.2) получаем

и

Следовательно, содержащая вершину является порожденным подграфом

Аналогично, содержащая вершину есть порожденный подграф содержащая подграф

содержащая - подграф и содержащая - подграф . Следует отметить, что последняя состоит из единственной вершины графа

Конденсация приведена на рис. 2.3.

Процедуру, описанную выше и связанную с нахождением графа, можно сделать более удобной, если непосредственно использовать матрицы определенные в предшествующем разделе. Пусть запись означает поэлементное умножение этих матриц; тогда сразу видно, что строка матрицы содержит единицы только в тех столбцах для которых выполняется условие: вершины взаимно достижимы; в других местах строки стоят нули. Таким образом, две вершины находятся в одной и той же тогда и только тогда, когда соответствующие им строки (или столбцы) в матрице идентичны. Вершины, которым соответствуют строки, содержащие 1 в столбце образуют множество вершин содержащей Отсюда мгновенно следует, что матрицу можно преобразовать путем транспонирования строк и столбцов в блочно-диагональную каждая из диагональных подматриц этой матрицы соответствует графа и содержит только единичные элементы; все остальные элементы блочно-диагональной матрицы равны нулю. Для приведенного ранее примера матрица преобразованная соответствующим образом, имеет вид

1
Оглавление
email@scask.ru