Главная > Теория графов. Алгоритмический подход
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4.1. Оптимальные циклы в графах с двойными весами [24.9]

Во многих ситуациях возникает следующая задача. Дан граф, дугам которого приписаны два числа — вес и некоторое другое число Нужно найти такой цикл для которого целевая функция

минимальна (или максимальна).

Рассмотрим, например, обслуживание судном или самолетом некоторой сети маршрутов и предположим, что «выгода», а «время», необходимое для прохождения по дуге Задача нахождения замкнутого обслуживаемого маршрута максимизирующего выгоду, относится к задачам описываемого типа. Более реалистичные задачи, учитывающие емкость транспортных средств рассмотрены в работе [93.

Другими задачами, которые можно сформулировать как задачи нахождения оптимальных циклов в графах с двойными весами, являются задачи планирования параллельных вычислений [31] и управления технологическими процессами [6].

Задачу нахождения в графе с двойными весами цикла для которого отношение минимально, можно решить, используя алгоритм обнаружения в графе цикла отрицательного веса. Это делается так. Допустим, что веса произвольные действительные числа (положительные, отрицательные или нуль) с единственным ограничением, что для всех циклов из (В большинстве практических ситуаций, например, упомянутых выше, но для всех

Возьмем некоторое пробное значение целевой функции и рассмотрим граф с модифицированными весами

Попытка найти в цикл отрицательного веса с матрицей может привести к следующим трем возможностям.

A. Существует цикл отрицательного веса, для которого

Б. Не существует никакого цикла с отрицательным весом и

B. Существует цикл с нулевым (но не отрицательным) весом, т. е.

В случае (минимальное значение меньше чем так как неравенство

может выполняться только при

а это, очевидно, означает, что должно быть меньше чем

Аналогично в случае а в случае Все сказанное приводит к следующей процедуре поиска. Начнем с некоторого значения Если это значение слишком велико (т. е. ймеет место случай А); возьмем если же оно слишком мало (т. е. имеет место случай возьмем Как только будут найдены верхняя и нижняя границы (соответственно для берем и заменяем в случае на а в случае на Так как число итераций пропорционально числу значащих разрядов требуемой точности, т. е. пропорционально где величина погрешности, и так как каждая итерация (нахождение отрицательного цикла или вычисление полной матрицы расстояний) требует порядка операций, то решение сформулированной выше задачи с двойными весами требует операций.

1
Оглавление
email@scask.ru