Главная > Теория графов. Алгоритмический подход
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 4. РАСКРАСКИ

1. Введение

Разнообразные задачи, возникающие при планировании производства, составлении графиков осмотра, хранении и транспортировке товаров и т. д., могут быть представлены часто как задачи теории графов, тесно связанные с так называемой «задачей раскраски». Графы, рассматриваемые в этой главе, являются неориентированными и не имеют петель; если специально не оговаривается иное, то под словом «граф» понимается именно такой граф.

Граф называют -хроматическим, если его вершины могут быть раскрашены с использованием цветов (красок) так, что не найдется двух смежных вершин одного цвета. Наименьшее число такое, что граф является -хроматическим, называется хроматическим числом графа и обозначается Задача нахождения хроматического числа графа называется задачей о раскраске (или задачей раскраски) графа. Соответствующая этому числу раскраска вершин разбивает множество вершин графа на подмножеств, каждое из которых содержит вершины одного цвета. Эти множества являются независимыми, поскольку в пределах одного множества нет двух смежных вершин.

Вообще говоря, хроматическое число графа (так же как числа независимости и доминирования, рассмотренные в предшествующей главе) нельзя найти, зная только числа вершин и ребер графа. Недостаточно также знагь степень каждой вершины, чтобы вычислить хроматическое число графа. В этом можно убедиться, рассматривая графы, приведенные на рис. 4.1(a) и 4.1(б). Эти графы имеют по вершин, ребер и одинаковые распределения степеней вершин Однако хроматические числа данных графов равны 4 и 2 соответственно. При известных величинах (число вершин), (число ребер) и (степени вершин графа) можно получить верхнюю и нижнюю оценки для хроматического числа графа. Этим оценкам посвящен следующий раздел.

Задача нахождения хроматического числа произвольного графа явилась предметом многих исследований в конце XIX и в текущем столетии. Сейчас по этому вопросу известно большое количество интересных результатов. В этой главе, однако, мы не пытаемся обсудить эти результаты или хотя бы дать их краткий обзор. Мы вводим только такие понятия, которые нужны для построения

Рис. 4.1. Два графа с одинаковыми и распределениями степеней вершин, но с различными хроматическими числами,

алгоритмов решения задачи о раскраске графа. Здесь мы рассматриваем в основном алгоритмы (как точные, так и «приближенные»), позволяющие находить (точное или приближенное) значение хроматического числа произвольного графа и соответствующую этому значению раскраску вершин.

1
Оглавление
email@scask.ru