Главная > Теория графов. Алгоритмический подход
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. Кратные медианы (p-медианы) графа

В предыдущей главе, обобщая понятие центра, мы ввели понятие -центра. Подобным же образом можно обобщить понятие медианы, определив -медиану.

Пусть подмножество множества вершин X графа и предположим, что содержит вершин. Как и прежде, введем следующие обозначения:

и

Если вершина из на которой достигается минимум в или то говорят, что вершина прикреплена к Передаточные числа множества вершин определяются

так же, как и для одиночной вершины:

где соответственно внешнее и внутреннее передаточные числа множества вершин

Множество для которого

называют внешней -медианой графа аналогично определяется внутренняя -медиана.

Как и в случае -центров, рассмотренных в предыдущей главе, даже для графов средних размеров с вычислительной точки зрения нецелесообразно использовать при нахождении -медиан непосредственно выражения (6.4), (6.5) и (6.6). Алгоритмы построения -медиан будут даны в разд. 5.

3.1. Абсолютные p-медианы

С целью упрощения изложения рассмотрим неориентированный граф Индексы будут отсутствовать. Разберем сначала случай медианы -медианы). Спрашивается, существует ли такая точка у на некотором ребре (не обязательно совпадающая с вершиной графа для которой передаточное число

меньше, чем для медианы графа Точку у, на которой достигается минимум величины будем называть абсолютной медианой графа

Сейчас мы докажем [5,6], что не существует точки у, для которой т. е. здесь ситуация противополоясна той, которая имела место при рассмотрении центров.

Теорема 1. Какова бы ни была точка у графа в нем найдется по крайней мере одна вершина для котярой

Доказательство. Пусть у — точка ребра расположенная на расстоянии от Тогда

где длина ребра

Пусть множество тех вершин для которых первый член в (6.7) не больше второго, множество вершин, для которых второй член меньше первого. Мы можем тогда написать

Поскольку из неравенства треугольника следует, что

то, заменяя на в выражении (6.8), получаем

Так как то, сделав перегруппировку в (6.10), имеем:

Поскольку для каждого ребра мы вправе сами решать, какую вершину называть и какую то всегда можно добиться выполнения неравенства

Заметив, что первый член в правой части неравенства (6.11) равен получаем из (6.11) такое соотношение:

Таким образом, для вершины величина не превышает следовательно, теорема доказана.

Теорема 1 довольно просто обобщается на случай -медиан.

Теорема 2. Каково бы ни было множество состоящее из точек графа т. е. из точек ребер и вершин, найдется по крайней мере одно подмножество , содержащее вершин, для которого

В теоремах предполагалось, что передаточные числа определены с помощью выражений (6.1) и (6.5). В работах Леви [20], Голдмана 112] и Голдмана и Мейерса [14] было показано, что эти теоремы остаются в силе и в тех случаях, когда передаточные числа определяются как суммы произвольных, вогнутых функций от взвешенных расстояний.

Из теорем 1 и 2 следует, что понятие абсолютной медианы не представляет особого интереса (в противоположность ситуации с абсолютными центрами, рассмотренными в гл. 5). Поэтому в остальной части этой главы основное внимание уделяется задаче -медиане.

1
Оглавление
email@scask.ru