Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
11. ДВИЖЕНИЕ ТЕЛ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИРассмотрим вопрос о движении тел под действием силы тяжести. Если модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу всемирного тяготения во время движения постоянной, а движение тела равноускоренным. Самый простой случай движения тел под действием силы тяжести — свободное падение с начальной скоростью, равной нулю. В этом случае тело движется прямолинейно с ускорением свободного падения по направлению к центру Земли. Если начальная скорость тела отлична от нуля и вектор начальной скорости направлен не по вертикали, то тело под действием силы тяжести движется с ускорением свободного падения по криволинейной траектории. Форму такой траектории наглядно иллюстрирует струя воды, вытекающая под некоторым углом к горизонту (рис. 31). При бросании тела с некоторой высоты параллельно земной поверхности дальность полета будет тем большей, чем больше начальная скорость.
При больших значениях начальной скорости необходимо учитывать шарообразность Земли и изменение направления вектора силы тяжести в разных точках траектории. Первая космическая скорость.При некотором значении начальной скорости тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии атмосферы может двигаться вокруг Земли по окружности, не падая на Землю и не удаляясь от нее. Скорость, с которой происходит движение тела по круговой орбите под действием силы всемирного тяготения, называется первой космической скоростью. Определим первую космическую скорость для Земли (см. передний форзац). Если тело под действием силы тяжести движется вокруг Земли равномерно по окружности радиусом то ускорение свободного падения является его центростремительным ускорением:
Отсюда первая космическая скорость равна
Подставив в выражение (11.2) значение радиуса Земли и ускорения свободного падения у ее поверхности, получим, что первая космическая скорость для Земли Эта скорость примерно в 8 раз больше скорости пули. Первая космическая скорость для любого небесного тела также определяется выражением (11.2). Ускорение свободного падения на расстоянии от центра небесного тела можио найти, воспользовавшись вторым законом Ньютона и законом всемирного тяготения:
Из выражений (11.2) и (11.3) получаем, что первая космическая скорость на расстоянии от центра небесного тела массой М равна
Для запуска на околоземную орбиту искусственный спутник Земли или космический корабль необходимо сначала вывести за пределы атмосферы. Поэтому космические корабли стартуют вертикально. На высоте 200—300 км от поверхности Земли атмосфера очень разрежена и почти не влияет на движение космических кораблей. На такой высоте ракета делает поворот и сообщает аппарату, запускаемому на орбиту искусственного спутника, первую космическую скорость в направлении, перпендикулярном вертикали (рис. 32).
Если космическому аппарату сообщается скорость меньше первой космической, то он движется по траектории, которая пересекается с поверхностью земного шара, т. е. аппарат падает на Землю. При начальной скорости больше но меньше космический аппарат движется вокруг Земли по криволинейной траектории — эллипсу. Чем больше начальная скорость, тем все более вытянут эллипс.
При достижении некоторого значения скорости, называемого второй космической скоростью, эллипс превращается в параболу и космический корабль уходит от Земли безвозвратно. У поверхности Земли вторая космическая скорость равна При скорости более второй космической тело движется по гиперболической траектории (рис. 33).
|
1 |
Оглавление
|