Главная > Физика: Справ. материалы (Кабардин О. Ф.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

50. ЭЛЕКТРИЧЕСКИИ ТОК В ВАКУУМЕ

Термоэлектронная эмиссия.

Соединим стержень заряженного электрометра с одним электродом вакуумной стеклянной колбы, а корпус электрометра — с другим электродом, представляющим собой тонкую металлическую нить (рис. 169). Опыт покажет, что электрометр не разряжается.

Между двумя электродами, расположенными в герметичном сосуде, из которого удален воздух, и находящимися под напряжением, электрический ток отсутствует, так как в вакууме нет свободных носителей электрического заряда. Американский ученый и изобретатель Томас Эдисон (1847—1931) обнаружил (1879 г.), что в вакуумной стеклянной колбе возникает электрический ток, если один из электродов нагреть до высокой температуры.

Подключим к выводам металлической нити источник тока. Если нить соединена с отрицательным полюсом источника, то при ее нагревании электрометр быстро разряжается. При соединении нити с положительным полюсом электрометр не разряжается и при нагревании нити током. Эти опыты доказывают, что нагретый катод испускает

частицы, обладающие отрицательным электрическим зарядом. Эти частицы — электроны. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией.

Диод.

Термоэлектронная эмиссия используется в различных электронных приборах. Простейший из них — электровакуумный диод. Этот прибор состоит из стеклянного баллона, в котором находятся два электрода: катод и анод. Анод изготовлен из металлической пластины, катод — из тонкой металлической проволоки, свернутой в спираль. Концы спирали укреплены на металлических стержнях, имеющих два вывода для подключения в электрическую цепь. Соединив выводы катода с источником тока, можно вызвать нагревание проволочной спирали катода проходящим током до высокой температуры. Проволочную спираль, нагреваемую электрическим током, называют нитью накала лампы. Условное обозначение вакуумного диода показано на рисунке 170.

Применение диода.

Включив вакуумный диод в электрическую цепь последовательно с источником постоянного тока и амперметром, можно обнаружить основное свойство диода, используемое в различных радиоэлектронных приборах, — одностороннюю проводимость. При подключении источника тока положительным полюсом к аноду и отрицательным к катоду электроны, испускаемые нагретым катодом, движутся под действием электрического поля к аноду — в цепи течет электрический ток. Если подключить источник тока положительным полюсом к катоду, а отрицательным — к аноду, то электрическое поле будет препятствовать движению электронов от катода к аноду — электрического тока в цепи нет. Свойство односторонней проводимости диода используется в радиоэлектронных приборах для преобразования переменного тока в постоянный.

Триод.

Потоком электронов, движущихся в электронной лампе от катода к аноду, можно управлять с помощью электрических и магнитных полей. Простейшим электровакуумным прибором, в котором осуществляется управление потоком электронов с помощью электрического поля, является триод. Баллон, анод и катод вакуумного триода имеют такую же конструкцию, как и у диода, однако на пути электронов от катода к аноду в триоде располагается третий электрод, называемый сеткой. Обычно сетка — это спираль из нескольких витков тонкой проволоки вокруг катода.

Если на сетку подается положительный потенциал относительно катода (рис. 171), то значительная часть электронов

пролетает от катода к аноду, и в цепи анода существует электрический ток. При подаче на сетку отрицательного потенциала относительно катода электрическое поле между сеткой и катодом препятствует движению электронов от катода к аноду (рис. 172), анодный ток убывает. Таким образом, изменяя напряжение между сеткой и катодом, можно регулировать силу тока в цепи анода.

Устройство вакуумного триода показано на рисунке 173, его условное обозначение на схемах — на рисунке 174.

Электронные пучки и их свойства.

Электроны, испускаемые нагретым катодом, можно с помощью электрических полей разгонять до высоких скоростей. Пучки электронов, движущихся с большими скоростями, можно использовать для получения рентгеновских лучей, плавки и резки металлов. Способность электронных пучков испытывать отклонения под действием электрических и магнитных полей и вызывать свечение кристаллов используется в электронно-лучевых трубках.

Электронно-лучевая трубка.

Если в аноде 2 вакуумного диода сделать отверстие, то часть электронов, испущенных катодом 1, пролетит сквозь отверстие и образует в пространстве за анодом поток параллельно летящих электронов — электронный луч 5 (рис. 175).

Электровакуумный прибор, в котором используется такой поток электронов, называется электронно-лучевой трубкой.

Внутренняя поверхность стеклянного баллона электронно-лучевой трубки против анода покрыта тонким слоем кристаллов,

способных светиться при попадании в них быстрых электронов. Эту часть трубки называют экраном (б).

С помощью электрических и магнитных полей можно управлять движением электронов на пути от анода до экрана и заставить электронный луч «рисовать» любую картину на экране. Эта способность электронного луча используется для создания изображений на экране электронно-лучевой трубки телевизора, называемой кинескопом. Изменение яркости свечения пятна на экране достигается путем управления интенсивностью пучка электронов с помощью дополнительного электрода, расположенного между катодом и анодом и работающего по принципу управляющей сетки электровакуумного триода.

В трубке электронно-лучевого осциллографа между анодом и экраном расположены две пары параллельных металлических пластин. Эти пластины называются отклоняющими пластинами. Подача напряжения на вертикально расположенные пластины 4 вызывает смещение электронного луча в горизонтальном направлении, подача напряжения на горизонтальные пластины 3 вызывает вертикальное отклонение луча. Смещения луча на экране трубки пропорциональны приложенному напряжению, поэтому электронный осциллограф может использоваться в качестве электроизмерительного прибора.

Для исследования быстропеременных электрических процессов в осциллографе осуществляется развертка — равномерное перемещение электронного луча по горизонтали. Для того чтобы луч перемещался вдоль горизонтальной

оси с постоянной скоростью, напряжение на горизонтально отклоняющих пластинах должно изменяться линейно во времени, а для возвращения луча в исходное положение напряжение должно очень быстро падать до нуля. Такая форма напряжения носит название пилообразной (рис. 176).

1
Оглавление
email@scask.ru