Главная > Механика твердого тела. Лекции
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ЛЕКЦИЯ №3. Динамика абсолютно твердого тела. Уравнение поступательного движения и уравнение моментов. Вращение твердого тела вокруг неподвижной оси. Центр удара. Динамика плоского движения твердого тела. Движение аксиально симметричного твердого тела, закрепленного в центре масс. Уравнения Эйлера.

Уравнения динамики твердого тела. Общий случай.

В общем случае абсолютно твердое тело имеет 6 степеней свободы, и для описания его движения необходимы 6 независимых скалярных уравнений или 2 независимых векторных уравнения.

Вспомним, что твердое тело можно рассматривать как систему материальных точек, и, следовательно, к нему применимы те уравнения динамики, которые справедливы для системы точек в целом.

Обратимся к опытам.

Возьмем резиновую палку, утяжеленную на одном из концов и имеющую лампочку точно в центре масс (рис. 3.1). Зажжем лампочку и бросим палку из одного конца аудитории в другой, сообщив ей произвольное вращение — траекторией лампочки будет при этом парабола — кривая, по которой полетело бы небольшое тело, брошенное под углом к горизонту.

Стержень, опирающийся одним из концов на гладкую горизонтальную плоскость (рис. 1.16), падает таким образом, что его центр масс остается на одной и той же вертикали — нет сил, которые сдвинули бы центр масс стержня в горизонтальном направлении.

Опыт, который был представлен на рис. 2.2а,в, свидетельствует о том, что для изменения момента импульса тела существенна не просто сила, а ее момент относительно оси вращения.

Тело, подвешенное в точке, не совпадающей с его центром масс (физический маятник), начинает колебаться (рис. 3.2а) — есть момент силы тяжести относительно точки подвеса, возвращающий отклоненный маятник в положение равновесия. Но тот же маятник, подвешенный в центре масс, находится в положении безразличного равновесия (рис. 3.26).

Рис. 3.1

Рис. 3.2

Роль момента силы наглядно проявляется в опытах с “послушной” и “непослушной” катушками (рис. 3.3). Плоское движение этих катушек можно представить как чистое вращение вокруг мгновенной оси, проходящей через точку соприкосновения катушки с плоскостью. В зависимости от направления момента силы относительно мгновенной оси катушка либо откатывается (рис. 3.3а), либо накатывается на нитку (рис. 3.36). Держа нить достаточно близко к горизонтальной плоскости, можно принудить к послушанию самую “непослушную” катушку.

Все эти опыты вполне согласуются с известными законами динамики, сформулированными для системы материальных точек: законом движения центра масс и законом изменения момента импульса системы под действием момента внешних сил. Таким образом, в качестве двух векторных уравнений движения твердого тела можно использовать:

1. Уравнение движения центра масс

Здесь — скорость центра масс тела, сумма всех внешних сил, приложенных к телу.

2. Уравнение моментов

Здесь — момент импульса твердого тела относительно некоторой точки, М — суммарный момент внешних сил относительно той же самой точки.

К уравнениям (3.1) и (3.2), являющимся уравнениями динамики твердого тела, необходимо дать следующие комментарии:

1. Внутренние силы, как и в случае произвольной системы материальных точек, невлияют на движение центра масс и не могут изменить момент импульса тела.

2. Точку приложения внешней силы можно произвольно перемещать вдоль линии, по которой действует сила. Это следует из того, что в модели абсолютно твердого тела локальные деформации, возникающие в области приложения силы, в расчет не принимаются. Указанный перенос не повлияет и на момент силы относительно какой бы то ни было точки, так как плечо силы при этом не изменится.

3. Векторы и М в уравнении (3.2), как правило, рассматриваются относительно некоторой неподвижной в лабораторной системе точки. Во многих задачах и М удобно рассматривать относительно движущегося центра масс тела. В этом случае уравнение моментов имеет вид, формально

Рис. 3.3

совпадающий с (3.2). В самом деле, момент импульса тела относительно движущегося центра масс О связан с моментом импульса относительно неподвижной точки О соотношением, полученным в конце лекции №2:

где — радиус-вектор от О к — полный импульс тела. Аналогичное соотношение легко может быть получено и для моментов силы:

где — геометрическая сумма всех сил, действующих на твердое тело. Поскольку точка О неподвижна, то справедливо уравнение моментов (3.2):

Тогда

Здесь учтено, что

Величина есть скорость точки О в лабораторной системе Учитывая (3.4), получим

Поскольку движущаяся точка О — это центр масс тела, то масса тела), то есть уравнение моментов относительно движущегося центра масс имеет такой же вид, что и относительно неподвижной точки. Существенно отметить, что в этом случае, как было показано в конце лекции №2, скорости всех точек тела при определении следует брать относительно центра масс тела.

Ранее было показано, что произвольное движение твердого тела можно разложить на поступательное (вместе с системой начало которой находится в некоторой точке — полюсе, жестко связанном с телом) и вращательное (вокруг мгновенной оси, проходящей через полюс). С точки зрения кинематики выбор полюса особого значения не имеет, с точки же зрения динамики полюс, как теперь понятно, удобно поместить в центр масс. Именно в этом случае уравнение моментов (3.2) может быть записано относительно центра масс (или оси, проходящей через центр масс) в том же виде, как и относительно неподвижного начала (или неподвижной оси).

4. Если не зависит от угловой скорости тела, от скорости центра масс, то уравнения (3.1) и (3.2) можно рассматривать

независимо друг от друга. В этом случае уравнение (3.1) соответствует просто задаче из механики точки, а уравнение (3.2) — задаче о вращении твердого тела вокруг неподвижной точки или неподвижной оси. Пример ситуации, когда уравнения (3.1) и (3.2) нельзя рассматривать независимо — движение вращающегося твердого тела в вязкой среде.

Далее в этой лекции мы рассмотрим уравнения динамики для трех частных случаев движения твердого тела: вращения вокруг неподвижной оси, плоского движения и, наконец, движения твердого тела, имеющего ось симметрии и закрепленного в центре масс.

I. Вращение твердого тела вокруг неподвижной оси.

В этом случае движение твердого тела определяется уравнением

Здесь — это момент импульса относительно оси вращения, то есть проекция на ось момента импульса, определенного относительно некоторой точки, принадлежащей оси (см. лекцию №2). М — это момент внешних сил относительно оси вращения, то есть проекция на ось результирующего момента внешних сил, определенного относительно некоторой точки, принадлежащей оси, причем выбор этой точки на оси, как и в случае с значения не имеет. Действительно (рис. 3.4), где — составляющая силы, приложенной к твердому телу, перпендикулярная оси вращения, — плечо силы относительно оси.

Поскольку — момент инерции тела относительно оси вращения), то вместо можно записать

или

поскольку в случае твердого тела

Уравнение (3.9) и есть основное уравнение динамики вращательного движения твердого тела вокруг неподвижной оси. Его векторная форма имеет вид:

Рис. 3.4

Вектор со всегда направлен вдоль оси вращения, а это составляющая вектора момента силы вдоль оси.

В случае получаем соответственно и момент импульса относительно оси сохраняется.

При этом сам вектор определенный относительно какой-либо точки на оси вращения, может меняться. Пример такого движения показан на рис. 3.5.

Стержень шарнирно закрепленный в точке А, вращается по инерции вокруг вертикальной оси таким образом, что угол а между осью и стержнем остается постоянным. Вектор момента импульса относительно точки А движется по конический поверхности с углом полураствора однако проекция на вертикальную ось остается постоянной, поскольку момент силы тяжести относительно этой оси равен нулю.

Categories

1
Оглавление
email@scask.ru