Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Гироскопические силы.Обратимся к простому опыту: возьмем в руки вал с насаженным на него колесом С (рис. 4.9). Пока колесо не раскручено, не представляет никакого труда поворачивать вал в пространстве произвольным образом. Но если колесо раскручено, то попытки повернуть вал, например, в горизонтальной плоскости с небольшой угловой скоростью О. приводят к интересному эффекту: вал стремится вырваться из рук и повернуться в вертикальной плоскости; он действует на кисти рук с определенными силами и (рис. 4.9).
Рис. 4.8
Рис. 4.9 Требуется приложить ощутимое физическое усилие, чтобы удержать вал с вращающимся колесом в горизонтальной плоскости. Рассмотрим эффекты, возникающие при вынужденном вращении оси гироскопа, более подробно. Пусть ось гироскопа укреплена в -образной раме, которая может поворачиваться вокруг вертикальной оси (рис. 4.10). Такой гироскоп обычно называют несвободным — его ось лежит в горизонтальной плоскости и выйти из нее не может. Раскрутим гироскоп вокруг его оси симметрии до большой угловой скорости (момент импульса и станем поворачивать раму с укрепленным в ней гироскопом вокруг вертикальной оси с некоторой угловой скоростью как показано на рис. 4.10. Момент импульса получит при этом приращение которое должно быть обеспечено моментом сил М, приложенным к оси гироскопа. Момент М, в свою очередь, создан парой сил возникающих при вынужденном повороте оси гироскопа и действующих на ось со стороны рамы. По третьему закону Ньютона ось действует на раму с силами (рис. 4.10). Эти силы называются гироскопическими; они создают гироскопический момент М. Появление гироскопических сил называют гироскопическим эффектом. Именно эти гироскопические силы мы и чувствуем, пытаясь повернуть ось вращающегося колеса (рис. 4.9). Гироскопический момент нетрудно рассчитать. Положим, согласно элементарной теории, что
где — момент инерции
Рис. 4.10 гироскопа относительно его оси симметрии, а угловая скорость собственного вращения. Тогда момент внешних сил, действующих на ось, будет равен
где — угловая скорость вынужденного поворота (иногда говорят: вынужденной прецессии). Со стороны оси на подшипники действует противоположный момент
Таким образом, вал гироскопа, изображенного на рис. 4.10, будет прижиматься кверху в подшипнике В и оказывать давление на нижнюю часть подшипника А. Направление гироскопических сил можно легко найти с помощью правила, сформулированного Н.Е.Жуковским: гироскопические силы стремятся совместить момент импульса гироскопа с направлением угловой скорости вынужденного поворота. Это правило можно наглядно продемонстрировать с помощью устройства, представленного на рис. 4.11. Ось гироскопа закреплена в кольце, которое может свободно поворачиваться в обойме. Приведем обойму во вращение вокруг вертикальной оси с угловой скоростью (вынужденный поворот), и кольцо с гироскопом будет поворачиваться в обойме до тех пор, пока направления и не совпадут. Такой эффект лежит в основе известного магнитомеханического явления — намагничивания железного стержня при его вращении вокруг собственной оси — при этом спины электронов выстраиваются вдоль оси стержня (опыт Барнетта). Гироскопические усилия испытывают подшипники осей быстро вращающихся частей машины при повороте самой машины (турбины на корабле, винта на самолете и т.д.). При значительных величинах угловой скорости вынужденной прецессии и собственного вращения а также больших размерах маховика эти силы могут даже разрушить подшипники. Рассмотрим некоторые примеры проявления гироскопических сил.
Рис. 4.11
Рис. 4.12 Пример 1. Легкий одномоторный самолет с правым винтом совершает левый вираж (рис. 4.12). Гироскопический момент передается через подшипники А и В на корпус самолета и действует на него, стремясь совместить ось собственного вращения винта (вектор со) с осью вынужденной прецессии (вектор Самолет начинает задирать нос кверху, и летчик должен “дать ручку от себя”, то есть опустить вниз руль высоты. Таким образом, момент гироскопических сил будет компенсирован моментом аэродинамических сил. Пример 2. При килевой качке корабля (с носа на корму и обратно) ротор быстроходной турбины участвует в двух движениях: во вращении вокруг своей оси с угловой скоростью и в повороте вокруг горизонтальной оси, перпендикулярной валу турбины, с угловой скоростью (рис. 4.13). При этом вал турбины будет давить на подшипники с силами лежащими в горизонтальной плоскости. При качке эти силы, как и гироскопический момент, периодически меняют свое направление на противоположное и могут вызвать “рыскание” корабля, если он не слишком велик (например, буксира). Допустим, что масса турбины кг, ее радиус инерции скорость вращения турбины об/мин, максимальная угловая скорость корпуса судна при килевой качке расстояние между подшипниками Максимальное значение гироскопической силы, действующей на каждый из подшипников, составит
После подстановки числовых данных получим , то есть около 1 тонны. Пример 3. Гироскопические силы могут вызвать так называемые колебания “шимми” колес автомобиля (рис. 4.14) [9]. Колесу, вращающемуся вокруг оси с угловой скоростью в момент наезда на препятствие сообщается дополнительная скорость вынужденного поворота вокруг оси, перпендикулярной плоскости рисунка. При этом возникает момент гироскопических сил, и колесо начнет поворачиваться вокруг оси Приобретая угловую скорость поворота вокруг оси колесо снова начнет поворачиваться вокруг оси,
Рис. 4.13
Рис. 4.14 перпендикулярной плоскости рисунка. В результате возникают колебательные движения колеса вокруг двух взаимно перпендикулярныхосей: оси поворота и оси, совмещенной с направлением движения автомобиля. Если в конструкции автомобиля не принять специальных мер, эти колебания могут привести к срыву покрышки с обода колеса и к поломке деталей его крепления. В современных конструкциях подвески колесо при наезде на препятствие практически остается в вертикальной плоскости. Пример 4. С гироскопическим эффектом мы сталкиваемся и при езде на велосипеде (рис. 4.15). Совершая, например, поворот направо, велосипедист инстинктивно смещает центр тяжести своего тела вправо, как бы заваливая велосипед. Возникшее принудительное вращение велосипеда с угловой скоростью О. приводит к появлению гироскопических сил с моментом М. На заднем колесе этот момент будет погашен в подшипниках, жестко связанных с рамой. Переднее же колесо, имеющее по отношению к раме свободу вращения в рулевой колонке, под действием гироскопического момента начнет поворачиваться как раз в том направлении, которое было необходимо для правого поворота велосипеда. Опытные велосипедисты совершают подобные повороты, что называется, “без рук”. Вопрос о возникновении гироскопических сил можно рассматривать и с другой точки зрения. Можно считать, что гироскоп, изображенный на рис. 4.10, участвует в двух одновременных движениях: относительном вращении вокруг собственной оси с угловой скоростью и переносном, вынужденном повороте вокруг вертикальной оси с угловой скоростью Таким образом, элементарные массы на которые можно разбить диск гироскопа (маленькие кружки на рис. 4.16), должны испытывать кориолисовы ускорения
Рис. 4.15
Рис. 4.16
Эти ускорения будут максимальны для масс, находящихся в данный момент времени на вертикальном диаметре диска, и равны нулю для масс, которые находятся на горизонтальном диаметре (рис. 4.16). В системе отсчета, вращающейся с угловой скоростью (в этой системе отсчета ось гироскопа неподвижна), на массы будут действовать кориолисовы силы инерции
Эти силы создают момент М, который стремится повернуть ось гироскопа таким образом, чтобы вектор совместился с Момент М должен быть уравновешен моментом сил реакции (рис. 4.10), действующих на ось гироскопа со стороны подшипников. По третьему закону Ньютона, ось будет действовать на подшипники, а через них и на раму, в которой эта ось закреплена, с гироскопическими силами Поэтому и говорят, что гироскопические силы обусловлены силами Кориолиса. Возникновение кориолисовых сил можно легко продемонстрировать, если вместо жесткого диска гироскопа взять гибкий резиновый диск (рис. 4.17). При повороте вала с раскрученным диском вокруг вертикальной оси он изгибается в направлении действия кориолисовых сил так, как изображено на рис. 4.17.
Рис. 4.17
|
1 |
Оглавление
|