Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
25.2. АППАРАТУРА И МЕТОДЫ25.2.1. Блоки высокой частотыРабота радиолокационной станции [115,227,444,466] зависит не только от конструкции отдельных блоков, но также от согласованности работы в целом. В частности, передатчик, приемник, модулятор и антенный переключатель часто объединяются в общий высокочастотный блок, который располагается вблизи от антенны. Механическая конструкция такого блока зависит от его расположения. В наземных и корабельных станциях эта аппаратура размещается в шкафах [116, 138]. Самолетное оборудование изолируется и герметизируется в обтекаемом контейнере, причем из-за ограничений по габаритам и весу возникает необходимость использовать миниатюризированную аппаратуру. Военное радиолокационное оборудование конструируется так, чтобы оно могло работать в тропических условиях. Имеется возможность проверять с помощью контрольных выводов отдельные цепи и узлы; кроме того, для защиты оборудования в случае отказа некоторых основных узлов имеется система релейной защиты. Для защиты от случайных внешних магнитных полей производится, например, экранировка железом Армко. Чтобы исключить перегрев аппаратуры, например электронных ламп большой мощности, применяется внутреннее вентиляторное охлаждение [229]. При этом, конечно, все тепло, выделяющееся в оборудовании, должно отводиться. Требующийся теплообмен [198] может быть достигнут с помощью радиатора, имеющего внутренние и внешние ребра, обдуваемые вентиляторами. На высокоскоростных самолетах, летающих на больших высотах, может потребоваться охлаждение аппаратуры с помощью холодильника. Силовая часть зависит от размера и расположения радиолокатора. Непрерывно действующие наземные установки могут питаться от коммерческой сети, при условии соблюдения предосторожности в части надежности, стабильности напряжения и помех от других потребителей. Для подвижных и переносных установок можно использовать батареи или генераторы с малыми бензиновыми двигателями. На больших кораблях часто имеются источники, у которых напряжение и частота такие же, как и в коммерческих сетях; на малых кораблях используются несколько более высокие частоты. На самолетах обычно имеются следующие источники питания: 24 в постоянный ток; 115 в 400 гц трехфазный ток и 115 в 1600 гц однофазный ток. Переменные токи получаются с помощью инверторов [272], оборудованных электронными стабилизаторами напряжения и регуляторами скорости, обеспечивающими стабильность в пределах ±2%. В радиолокаторах с непрерывным излучением, где требуется узкополосный спектр [225], в передатчике в качестве генераторов обычно используются клистроны. Для импульсных радиолокаторов необходимо генерировать циковые мощности, доходящие до нескольких мегаватт при скважности порядка 0,001. Для этой цели широко применяются магнетронные генераторы; затягивание частоты и нестабильность [183, 192, 222, 266, 470] из-за несогласованной нагрузки можно уменьшить, выбирая короткую линию передачи, либо, где это возможно, с помощью невзаимных развязывающих изоляторов [182]. Можно получать большие мощности с помощью таких усилителей, как клистроны и лампы бегущей волны [437]; ввиду удобства и стабильности их применение сейчас расширяется. Для генерирования синхронизированных импульсов соответствующей формы необходимо модуляторное устройство. В модуляторах на жестких лампах импульс подается на управляющую сетку электронной лампы, включенной последовательно, и таким образом энергия, запасенная в конденсаторе высоковольтного накопителя, поступает в генератор. Среди достоинств модулятора на жестких лампах надо отметить возможность работы с высокой частотой повторения, возможность варьирования периода повторения и амплитуды импульсов, а также отсутствие нестабильностей в работе. В модуляторах с длинной линией импульс подается непосредственно из заряженной линии задержки через разрядник. Применявшиеся вначале искровые разрядники теперь большей частью заменены водородными тиратронами или ферритовыми устройствами. Полные сопротивления модулятора и генератора согласовываются с помощью импульсного трансформатора. Он же может быть использован для изменения полярности генерируемого импульса, для развязки накопительной цепи модулятора от генератора, для согласования полного сопротивления вынесенного модулятора и (или) генератора с волновым сопротивлением соединительного кабеля. Как правило, применяются приемники супергетеродинного типа, и их ширина полосы зависит от темпа, с которым информация должна поступать от радиолокатора (полоса может доходить до 50 Мгц). Для приема слабых отраженных сигналов уровень шумов должен быть достаточно низок, а для этого необходимо часть приемника, а именно предварительный усилитель, размещать вблизи антенны. Местный гетеродин обычно имеет автоматическую подстройку частоты, которая может быть электронной или механической. Для уменьшения влияния шумов местного гетеродина применяются балансные смесители. В некоторых станциях для улучшения характеристик используются современные достижения в разработке малошумящих усилителей высокой частоты [416] с применением мазеров на твердом теле [118,472] и устройств с переменным реактивным сопротивлением [449, 473]. При работе с общей антенной требуется переключатель прием-передача [172], который в импульсных радиолокаторах выполняется в виде ферритовых переключателей или чаще в виде газоразрядных ламп. Фидеры от местного гетеродина к балансному смесителю сигнала и смесителю автоматической подстройки частоты вместе с выходом переключателя прием-передача обычно комбинируются в виде тройного гибридного узла. Чтобы избежать расстройки цепи промежуточной частоты из-за отражения на зеркальной частоте от узкополосного переключателя прием-передача, расстояния между смесителями сигналов и соответствующими гибридными соединениями выбираются с разницей на четверть волны. Для свгрхвысокочастотных радиолокаторов требуются антенны с узким лучом и низким уровнем бокового и обратного излучения. Тип антенны и ее положение относительно аппаратуры радиолокатора выбираются исходя из конкретного использования системы [269]. Обычно применяется тот или иной вид обзора пространства, а если станция устанавливается на самолетах или кораблях, то предусматривается также стабилизация по крену. От атмосферных осадков антенна защищается обтекателем [58]. Для достижения высокого темпа получения информации в одном из описанных в литературе [95, 456] радиолокаторов при передаче облучалась вся наблюдаемая область пространства, а при приеме производилось электронное сканирование узким лучом в течение времени, меньшего длительности импульса. Таким образом, если в секторе обзора укладывается N лучей, то требуемая ширина полосы приемника равняется Для удовлетворения противоречивых требований одновременного получения большой дальности действия и высокой разрешающей способности был применен метод сжатия импульсов (chirp) [412, 421]. Этот метод, базируется на том факте, что высокая разрешающая способность узких импульсов является следствием большой ширины их спектра. Но широкий спектр может быть и у достаточно длинного импульса, если ввести внутриимпульсную модуляцию, например частотную. Линейность радиолокационных систем позволяет произвести необходимое выравнивание фазы в приемнике и получить короткий импульс, соответствующий ширине спектра. Таким образом, излучаемый импульс может иметь приблизительно в 100 раз большую энергию, чем узкий импульс с такой же разрешающей способностью и пиковой мощностью. При таком методе у сжатого импульса на выходе приемника по шкале времени расположены боковые лепестки; их амплитуду можно уменьшить с помощью весовой обработки спектра импульса аналогично тому, как это делается при формировании диаграммы направленности в теории антенн. Допплеровское смещение частоты сигналов, отраженных от движущихся целей, приводит к расширению сжатого импульса и изменению его времени задержки. Это приводит к неопределенности в измерении дальности, но ошибку времени задержки, которая для системы является постоянной, можно скорректировать с помощью вычислительных средств. Можно сконструировать радиолокационную систему [420, 438, 475], которая будет оптимальным образом давать информацию о дальности и скорости цели. В наземных и корабельных импульсных радиолокаторах дальнего действия обычно используются частоты в диапазоне от
|
1 |
Оглавление
|