Главная > Лекции по теории образов. Синтез образов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 4. Деформации

1.4. Деформации на образующих, конфигурациях, изображениях

Может оказаться, что изображения, реально нами наблюдаемые, точно соответствуют изображениям алгебры Это обстоятельство упростит анализ. Ряд аналогичных ситуаций будет рассмотрен в части III (см. приложение).

Следует, однако, заметить, что в большинстве случаев мы можем наблюдать лишь искаженные варианты идеальных изображений в результате мы сталкиваемся с фундаментальной проблемой — каким образом возникают подобные деформации. Полный синтез образа требует определения механизма деформации. Оно необходимо также и на стадии анализа.

Обозначим через отображение алгебры изображений на множество изображений, которые могут наблюдаться. Элементы

будем называть деформированными изображениями.

Обычно число преобразований велико и заранее неизвестно, какое именно будет действовать. Символ Ф используется для обозначения множества всех преобразований.

До сих пор мы ничего не сказали о природе деформированных изображений. Простейшим является случай когда изображения относятся к тому же типу, что и идеальные изображения алгебры изображений В этом случае будем говорить об автоморфных деформациях, отображает алгебру изображений в самое себя.

В противном случае, при гетероморфных деформациях, множество может включать целый ряд различных типов, как мы убедимся в этой главе. Может оказаться, что также обладает структурой алгебры изображений, хотя и отличной от Следует подчеркнуть, что даже и в таком случае структуры эти могут резко отличаться и, следовательно, между существует принципиальное различие. Довольно часто мы будем сталкиваться со случаем при котором идеальные (недеформированные) изображения являются частными

случаями деформированных. Как правило, разрушает структуру, и поэтому будет менее структурированной, чем

В случае, когда а область определения часто будет расширяться от до причем область значений будет оставаться равной . В таком случае можно многократно применять последовательность и, естественно, обобщить до полугруппы преобразований.

Во многих случаях можно будет также расширять область определения преобразований подобия до Все сказанное можно объединить в виде условия, которое ниже в большинстве случаев будет выполняться. В данном разделе будем предполагать, что образует группу.

Определение 4.1.1. Механизм деформации называется регулярным, если

Автоморфные деформации представляют собой весьма частный случай регулярного множества Ф. Оба типа преобразований, будут определяться на одном и том же множестве. Их роли, однако, совершенно различны. Преобразования подобия обычно изменяют изображение систематически, и эти изменения интуитивно понятны. В тех случаях, когда группа, преобразования не приводят к потере информации, так как обратное преобразование восстанавливает исходное изображение. Деформации же, с другой стороны, могут исказить изображение до такой степени, что будет невозможно точно восстановить его. Деформации приводят к потере информации.

Взаимодействие преобразований подобия и деформаций играет существенную роль, и в связи с этим мы введем два свойства, выполнение которых существенно упрощает анализ образов.

Определение 4.1.2. Рассмотрим регулярный механизм деформации на алгебре изображений. Будем называть его

Следует заметить, что это жесткие условия и выполняются они не очень часто. Естественно, деформации явно ковариантны, если Ф — коммутативная полугруппа и Другой простой случай возникает, когда векторное пространство, образуется определенными на нем линейными операторами; при таких условиях деформации являются гомоморфными.

Пусть — метрическое пространство с расстоянием, удовлетворяющим следующим условиям:

Если влечет расстояние является определенным, однако это допущение будет вводиться не всегда.

Естественно потребовать, чтобы метрика соответствовала отношениям подобия в и обеспечиваться это будет двумя способами.

Определение 4.1.3. Будем называть расстояние определенное на регулярном

Исходя из заданного расстояния определим

В таком случае легко убедиться в том, что расстояние инвариантно, а расстояние полиостью инвариантно.

Иногда в основе деформации будет лежать некий физический механизм, реализация которого сопряжена с затратами мощности, энергии или какой-либо аналогичной физической величины, необходимой для преобразования идеального изображения в реально наблюдаемую форму. Мы воспользуемся более нейтральным термином и будем говорить о необходимом усилии,

Определение 4.1.4. Рассмотрим на регулярном пространстве деформации неотрицательную функцию обладающую следующими свойствами:

функция называется инвариантной функцией усилия. Если выполняется условие и условие

Если 3.5 — ковариантио, то условие выполняется автоматически. В результате приходим к следующей теореме:

Теорема 4.1.1. Пусть функция усилия является полностью инвариантной, и выполняется равенство

В таком случае является полностью инвариантным расстоянием.

Замечание. Мы молчаливо подразумевали, что соотношение рассматриваемое как уравнение относительно всегда имеет хотя бы одно решение. Если это не так, то соответствующее значение следует заменить на и может оказаться необходимым допустить значение для итогового расстояния. Это обстоятельство повлияет на доказательство лишь в незначительной степени.

Доказательство. Функция является симметрической относительно двух своих аргументов, и для доказательства неравенства треугольника рассмотрим фиксированные Если существуют такие, что

то, обозначив получаем

Отсюда на основании свойства определения 4.1.4 следует, что

откуда в свою очередь следует, что

Наконец, полная инвариантность получается из свойства определения 4.1.4, так как влечет т. е. Это означает, что расстояние является полностью инвариантным.

Если бы мы работали с функцией усилия обладающей лишь инвариантностью, то можно было бы утверждать только то, что результирующее расстояние инвариантно.

Введем вероятностную меру Р на некоторой -алгебре подмножеств . Это означет, что мы будем говорить о некоторых деформациях как более вероятных, чем другие. Нам также потребуются -алгебры и на Т и соответственно, такие, чтобы для любого подмножества Е в и для которых выполняется условие и соответственно, было справедливо

Для определенного деформированный аналог будет иметь на вероятностную меру

Введем теперь более общий и более интересный вариант ковариантных деформаций.

Определение 4.1.5. Регулярные деформации с вероятностной мерой Р называются ковариантными по вероятности, если для всякого преобразования подобия преобразования имеют на одно и то же распределение вероятностей.

В тех случаях, когда деформация сужает образ-соответствие на случайное подмножество Е (но не его значения), мы будем интерпретировать ковариантность по вероятности как равенство распределения вероятностей на множестве распределению вероятностей на случайном множестве Е.

При использовании этого определения для любого фиксированного можно записать, что

С другой стороны, если сотношение (4.1.12) выполняется для любых и Е, то деформации являются ковариантными по вероятности.

Важное следствие ковариантности по вероятности устанавливается следующей теоремой:

Теорема 4.1.2. Пусть деформации ковариантны по вероятности и образ, состоящий из классов эквивалентности по модулю

В таком случае, если Е представляет собой -инвариантное множество в то условные вероятности являются вполне определенными: не зависит от если .

Доказательство. Рассмотрим условную вероятность

где -некоторый прототип (см. (3.1.14)). В таком случае

ввиду того, что имеет место ковариантность по вероятности. С другой стороны,

так как Е является -инвариантным. Следовательно, константа, так что условная вероятность действительно является вполне определенной, поскольку она не зависит от того, какое изображение служит исходным при рассмотрении образа .

В противном случае нельзя было бы говорить о если, конечно, не ввести также вероятностную меру на алгебре идеальных изображений

К обсуждению, проведенному в данном разделе, следует добавить, что желательно выбирать алгебраическую, топологическую и вероятностную структуры таким образом, чтобы они допускали естественное взаимное согласование. Читатель, интересующийся тем, как это может быть сделано в рамках стандартной алгебраическо-топологической постановки, может обратиться к монографии автора (1963).

При выборе конкретного вида Р мы сталкиваемся с большими трудностями, чем те, которые связаны с теоретическими

аспектами меры. Выбор должен производиться в каждом случае отдельно таким образом, чтобы, используя доступные сведения из соответствующей предметной области, обеспечить достижение естественного компромисса: модель должна обеспечить достаточно точную аппроксимацию изучаемых явленнй и допускать в то же время возможность аналитического или численного решения. Тем не менее можно сформулировать несколько общих принципов, которые могут оказаться полезными при построении модели деформаций.

Во-первых, следует попытаться разложить , которое может быть довольно сложным пространством, на простые факторы Произведение может быть конечным, счетным или несчетным, как мы убедимся ниже. Иногда такое разбиение задается непосредственно, как, например, в случае, когда деформации сводятся к топологическому преобразованию опорного пространства, за которым следует деформация маски. Некоторую пользу можно извлечь также из того способа, при помощи которого алгебры изображений построены из элементарных объектов. Если рассматриваются изображения, конфигурации которых включают образующих, и все они идентифицируемы, то можно попробовать воспользоваться представлением

рассчитывая на то, что свойства факторов окажутся достаточно удобными. Этот метод будет работать, однако, только в том случае, когда образующие однозначно определяются изображением. Вместо этого можно попробовать воспользоваться соответствующим разбиением в применении к каноническим конфигурациям, образующие которых определены в рассматриваемой алгебре изображений.

После разделения на достаточно простые факторы необходимо решить, какую вероятностную меру следует ввести на При этом существенным моментом является выбор такого способа факторизации деформаций, при котором отдельные факторы оказываются независимыми друг от друга. Невозможно полностью задать Р, не располагая эмпирической информацией, и для того чтобы получить оценки с удовлетворительной точностью, аксиоматическая модель должна быть в достаточной степени структурирована. Это критический момент для определения Р, и здесь требуется такое понимание механизма деформации, которое исключит неадекватное представление данных при последующем анализе. Если нам действительно удалось провести разбиение таким образом, что факторы в вероятностном смысле независимы, остается еще решить задачу

определения на них безусловных распределении. В качестве примера рассмотрим идеальные образующие, порождаемые механизмом типа где можно рассматривать как разностный оператор, а деформированные образующие определяются выражением Первое, что следует попробовать — это допустить независимость значений различных аргументах). Если это не может быть принято в качестве адекватной аппроксимации, стоило бы попытаться устранить зависимость посредством работы не с а с некоторым ее преобразованием (например, линейным). Другими словами, можно выбирать модель таким образом, чтобы деформации принимали простую вероятностную форму. Отметим в качестве еще одного примера, что при работе с образами-соответствиями (см. разд. 3.5) и дискретным опорным пространством X можно попытаться промоделировать Р исходя из предположения о том, что различные точки X отображаются на опорное пространство независимо и что соответствующие распределения различны.

Для того чтобы сузить выбор безусловных распределений, рассмотрим роль преобразований подобия. Если, как и выше, выбрано удачно, то можно рассчитывать, что Р будет обладать соответствующей инвариантностью. Итак, если подобные идеальные изображения и то в первую очередь следует выяснить, не обладают ли одним и тем же распределением вероятностей. Можно также использовать другой подход: попробовать модель, постулирующую равенство распределений вероятностей этот путь приводит нас к ковариантности по вероятности.

С помощью этих методов можем определить аналитическую форму Р, и оценки свободных параметров получить эмпирически.

Механизмы деформации будут классифицироваться на основе двух критериев: уровня и типа.

Под уровнем механизма деформации мы будем подразумевать тот этап синтеза образов изображений, на котором определяется Высший уровень, уровень изображений, соответствует тому случаю, когда задается непосредственно для каждого I независимо от того, каким способом (идеальное) изображение синтезировано из конфигураций, правил, ограничений, образующих и признаков. Низший уровень соответствует случаю, когда задается на языке образующих, из которых строится конфигурация в Промежуточный уровень соответствует случаю задания на .

Тип определяет, насколько отличается от Мы уже сталкивались с одним видом грубой классификации, основанной на критерии типа: автоморфность или гетероморфность.

Мы будем также пользоваться разбиением гетероморфных деформаций на пять подклассов, не являющихся ни непересекающимися, ни исчерпывающими: изменение соответствия, изменение опорного пространства, неполнота наблюдений, косвенные наблюдения и прочие.

Эти критерии не предназначены для полной классификации деформаций, тем не менее они будут полезны при описании характера тех Ф, с которыми мы будем сталкиваться.

На протяжении всего этого раздела мы считали, что изображения подвергаются только одному виду деформации. Можно также рассмотреть ситуацию, когда имеется множество основных механизмов деформаций , применяемых к объекту последовательно. Простейшим является случай, когда принимает лишь конечное число значений, например и полная деформация

Множество мбжет быть счетным или иметь мощность континуума. В последнем случае через будем обозначать полную деформацию от до и предполагать наличие свойства полугруппы

Далее, если является вероятностным множеством, то мы будем считать частичные деформации на непересекающихся -интервалах стохастически независимыми.

1
Оглавление
email@scask.ru