Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
12.3. Реализация (n+1)-узловых резистивных n-полюсных цепей (подход Седербаума)В этом разделе рассматривается задача реализации вещественной симметричной Подход Гуиллемина [12.3] требует определения полюсной конфигурации (если она существует) и преобразования матрицы Y в матрицу Y, которая соответствует полюсной конфигурации в виде звезды. Если матрица Y является гипердоминантной, то реализации (как было показано в предыдущем разделе) можно достичь просмотром. Посредством предполагаемого переопределения полюсов эта же цепь может также реализовать данную матрицу Ниже описывается алгоритм Седербуама, позволяющий разложить матрицу Y в произведение как На каждом шаге алгоритма необходимо рассматривать два случая: Случай 1. Матрица Y — диагональная с k нулевыми диагональными элементами. Пусть Y — матрица, полученная удалением из матрицы Y всех строк и столбцов, которые содержат нули на диагонали. Легко видеть, что декомпозиция в этом случае будет иметь вид
где считается, что нулевые диагональные элементы матрицы Y находятся на последних k позициях. Например, матрицу
можно представить в виде декомпозиции
Случай 2. Матрица Y имеет некоторые ненулевые недиагональные элементы. В этом случае сначала выбираем ненулевой недиагональный элемент с наименьшим значением. Допустим, что ненулевые элементы одновременно во всех столбцах, кроме первого. Поэтому произвольно приписываем +1 к первому элементу ди фиксируя таким образом ориентацию ребра, имеющего проводимость
Заметим, что если
[о в противном случае. Этим заканчивается обсуждение двух случаев. На следующем шаге необходимо найти второй столбец матрицы Удалим из матрицы
Следовательно,
Заметим, что если матрица реализуема, то все нулевые элементы матрицы Y остаются неизменными в матрице и никакой ненулевой элемент Предположим, что матрица Если матрица Если матрица F реализуема, то, очевидно, что каждая матрица в последовательности Проиллюстрируем алгоритм Седербаума с помощью матрицы
Так как матрица У — не диагональная, случай 1 отпадает. Поэтому действуем, как описано в случае 2. Элемент
Например,
Затем получаем матрицу в виде
В матрице
Матрица
Продолжая таким же образом, далее получим
В приведенных выше матрицах элементы, выбранные для рассмотрели на каждом шаге, отмечены звездочкой. Ниже приводится декомпозиция
Хотелось бы отметить, что декомпозиционный алгоритм Седербаума, который мы только что обсудили, применим к любым схемным матрицам: это означает, что если схемную матрицу К можно декомпозировать в виде Таким образом, возникает необходимость того, чтобы алгоритм реализовывал данную матрицу как цикломатическую матрицу или матэицу сечений неориентированного графа. Такой алгоритм обсуждается в следующем разделе.
|
1 |
Оглавление
|