Главная > Фрактальная геометрия природы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

22 УСЛОВНАЯ СТАЦИОНАРНОСТЬ И КОСМОГРАФИЧЕСКИЕ ПРИНЦИПЫ

Пересказывая  в предыдущей главе общеизвестные доводы в пользу случайности, я не делал каких-либо различий между стандартными и фрактальными моделями. В стандартные модели рандомизация привносит значительные улучшения, однако и неслучайные модели остаются во многих отношениях вполне приемлемыми. В этой главе я намерен показать, что действительно рабочей фрактальной модели без случайности не обойтись.

Инвариантность при сдвигах. симметрия

Для дальнейших рассуждений нам понадобится понятие симметрии в его древнем философском смысле. Под симметрией мы будем понимать не «зеркальную» симметрию относительно оси, а сочетание оригинального значения греческого слова , которое можно передать как «следствие соразмерности различных составных частей и целого» (см. [590]), и значения, принятого в современной физике, исходя из которого,  симметрия становится синонимом инвариантности.

Самым существенным недостатком неслучайных фракталов является их недостаточная симметричность. Первые же направленные в их сторону упреки, выраженные в терминологии самых различных наук, указывали на невозможность построить неслучайный фрактал, инвариантный при сдвигах (т.е. стационарный), и, как следствие, на несоответствие неслучайных фракталов космологическому принципу.

Во-вторых, неслучайный фрактал не может быть однородно масштабно-инвариантным – в том смысле, что он допускает лишь дискретную последовательность коэффициентов подобия вида .

Проблема образования скоплений галактик настолько важна, что я решил построить наше теперешнее обсуждение именно вокруг нее – это эссе уже во второй раз вносит свой вклад в развитие астрономии.

Космологический принцип

Постулат, согласно которому настоящее время и наше положение на Земле не является ни центральным, ни сколько-нибудь особенным, а законы Природы должны быть одинаковы всегда и везде, называется космологическим принципом.

Это утверждение, формализованное А. Эйнштейном и Э. А. Милном (см. [445], с. 157), подробно обсуждается в [43].

Усиленный космографический принцип

Применяя космологический принцип во всей его первозданной мощи, можно потребовать, чтобы распределение материи всегда подчинялось в точности идентичным законам, независимо от системы отсчета (т.е. от начала координат и координатных осей), в которой производилось наблюдение.  Иными словами, распределение должно быть инвариантным при сдвигах.

К выбору названия для этого следствия нужно подойти с должной осторожностью. Поскольку оно относится не столько к теории , сколько к описанию , и поскольку мы вскоре предложим целый ряд более слабых его версий, представляется разумным определить его как усиленный космографический принцип.

Основополагающая идея такого принципа вполне могла бы быть позаимствована из доктрины «ученого незнания» Николая Кузанского (1401 – 1464): «В каком месте человек находится, то место и полагает центром мироздания»; «Центр мироздания находится везде, и, следовательно, нигде; нигде располагаются и его пределы».

Космографический принцип

Распределение материи, однако, не является строго однородным.

Наиболее очевидный ослабленный вариант нашего принципа получается посредством введения случайности (в ее стандартном виде, описанном в предыдущей главе). Теоретики от вероятности называют такой вариант принципом статистической стационарности, мы же, согласованности ради, назовем его однородным статистическим космографическим принципом. Суть его заключается в следующем: распределение материи следует одинаковым статистическим законам, независимо от системы отсчета.

В затруднительном положении

Применение вышеупомянутого принципа к кластеризации галактик ставит перед исследователем весьма непростые задачи. Вселенная Фурнье (см. главу 9), разумеется, донельзя неоднородна, но, может быть, есть еще надежда на то, что нам удастся рандомизировать эту модель с тем, чтобы привести ее в соответствие с однородным космографическим принципом. Однако для сохранения в неприкосновенности духа модели необходимо, чтобы при рандомизации не пострадало то ее свойство, согласно которому приблизительная плотность  в сфере радиуса  стремится к 0, когда . К сожалению, это свойство и однородный статистический космографический принцип суть вещи несовместимые.

Возникает искушение придать большее значение общему принципу, нежели всего лишь данным, и сделать вывод, что иерархическая кластеризация должна по достижении некоторого конечного верхнего порога прекратиться, т.е. все флуктуации являются локальными по своей протяженности, а общая плотность материи все же отлична от нуля.

Для осуществления этой идеи можно, например, взять бесконечное множество вселенных Фурнье и разбросать их повсюду статистически однородным образом. Еще один вариант, предложенный Р. М. Сонейрой, обсуждается в книге [467].

Условная стационарность

Я все же полагаю, что однородный статистический космографический принцип, пожалуй, выходит за рамки разумного и желательного и что его следует заменить еще более ослабленной формой (назовем ее условной), которая относится не ко всем наблюдателям, а только к материальным. Астрономы, должно быть, сочли бы такой принцип вполне приемлемым и давно взяли бы его на вооружение, заподозри они, что от него может быть хоть какая-то реальная польза. А польза есть: условная форма не содержит никаких допущений относительно глобальной плотности и признает соотношение .

Попробую теперь выразить мысли в менее напористой манере. Известно, что примирить усиленный космографический принцип с тем обстоятельством, что действительное распределение галактик чрезвычайно далеко от однородного, - задача очень сложная, если не вовсе невыполнимая. С одной стороны, если глобальная плотность  материи во Вселенной стремится к нулю, то усиленный космографический принцип, должно быть, неверен. С другой стороны, если величина  мала, но отлична от нуля, то усиленный космографический принцип выполняется асимптотически, хотя в интересующих нас масштабах от него нет никакой пользы. Вы, возможно, захотите держать его про запас, если вас это успокаивает. Возможно также, что вы предпочтете отбросить его совсем во избежание потенциальных недоразумений. Наконец, вы можете удовлетвориться заменой его на другой принцип, который имеет смысл во всех масштабах и независим от того, равна нулю или положительна плотность . Последний подход предполагает разбиение усиленного космографического принципа на две части.

Условный космографический принцип

Условное распределение. В тех случаях, когда начало системы отсчета само является материальной точкой, вероятностное распределение масс называется условным.

Основное космографическое допущение. Условное распределение масс одинаково для всех удовлетворяющих условию систем отсчета. В частности, масса , заключенная внутри шара радиуса , является случайной величиной, независимой от системы отсчета.

Формулировка условного космографического принципа звучит совершенно одинаково как для случая , так и для случая . Это принято с эстетической стороны и имеет преимущества со стороны философской, поскольку согласуется с духом современной физики. Разделяя усиленный космографический принцип на две части, мы получаем возможность выдвинуть на первый план утверждение, которое справедливо для всего, что мы можем наблюдать, и не придавать излишнего значения утверждению, которое является не более чем актом веры, - в лучшем случае, рабочей гипотезой.

Вспомогательное допущение о положительности общей плотности материи

Вспомогательное космографическое допущение. Величины

   и   

существуют, почти наверняка равны между собой, положительны и конечны.

Стандартный случай,

Статистические законы распределения материи можно формулировать различными способами. Можно воспользоваться при этом абсолютным распределением вероятностей относительно системы отсчета, центром которой является материальная  точка. В том случае, когда вышеупомянутое вспомогательное допущение подтверждается, условное распределение вероятностей выводится из абсолютного с помощью самого обыкновенного правила Байеса. А абсолютную вероятность можно вывести из условной вероятности, найдя среднее из значений последней относительно начал отсчета, однородно распределенных в пространстве.

 Начала отсчета, однородно распределенные по всему пространству, обладают, в общей сложности, бесконечной массой. Неусловное распределение можно переформировать – с тем, чтобы свести его к единице – тогда и только тогда, когда глобальная плотность положительна. См. [352].

Нестандартный случай,

Представим теперь обратную ситуацию – такую, в которой вспомогательное допущение ложно, а точнее, в которой предел  обращается в нуль. В этом случае абсолютное распределение вероятностей указывает лишь на то, что некий случайно выбранный шар конечного радиуса  почти наверняка окажется пустым. А значит тот, кто сидит на выбранной в пространстве случайным образом точке и глазеет по сторонам, почти наверняка ничего не увидит. Однако вероятностное распределение масс интересно человеческим существам лишь в той степени, в какой оно объясняет положение дел в реальной Вселенной, где как известно, масса в нуль не обращается, по крайней мере, в окрестности места обитания этих самых существ. После того, как событие произошло, абсолютная вероятность именно этого события представляет весьма ограниченный интерес.

Тот факт, что неусловное распределение автоматически пренебрегает подобными случаями, говорит о вопиющей его неадекватности при . Оно не только не совместно с массой, содержащейся в любом фрактале с размерностью , но и не сообщает нам абсолютно ничего, кроме того, что .

Условное распределение вероятностей, напротив, проводит четкие границы между фракталами с разными фрактальными размерностями, между масштабно-инвариантными и масштабно-неинвариантными фракталами, а также между разными прочими допущениями.

Нестандартные «пренебрежимые события»

Нестандартный случай  ставит физика лицом к лицу с двумя событиями. Одним из них, почти неизбежным, можно пренебречь; другим же, почти невероятным, не просто нельзя пренебречь – его следует тщательно проанализировать на предмет наличия более мелких подсобытий.

Это противопоставление с точностью до наоборот повторяет то, к какому мы все привыкли в нашей повседневной жизни. Среднее число выпадений орла в очень длинной серии бросков симметричной монеты может и не сходиться к половине от общего числа бросков, однако вероятность такой необходимости очень близка к нулю и поэтому совершенно нас не занимает. Если какой-либо вывод статистической механики (например, принцип увеличения энтропии) почти наверное справедлив, то вероятность того, что произойдет нечто противоположное, приближается к нулю, и поэтому ею можно пренебречь. Очевидно, что под тем, что следует после «поэтому» в двух предыдущих предложениях, подразумевается нечто полностью противоположное тому, что намерен предпринять в космографии я.

Во избежание стратификации

Следующая форма симметрии касается преобразования подобия. В том случае, когда элементы неслучайного фрактала на каждом этапе его построения уменьшаются в  раз, допустимые коэффициенты подобия имею вид . Если же значение  на каждом этапе меняется , выбор допустимых общих коэффициентов подобия оказывается более широк, однако до полной свободы этому выбору еще очень далеко.

Иными словами, неслучайные фракталы являют собой воплощение понятия сильно иерархической структуры; подобные множества я предпочитаю обозначать термином сильно стратифицированные. Некоторые из стратифицированных моделей по душе физикам, поскольку такие модели очень удобны в смысле вычислений. С точки же зрения философии это свойство представляется весьма неприятным; что же касается галактик, то нет никаких прямых свидетельств, подтверждающих существование таких стратифицированных скоплений. Вот почему повсюду слышатся призывы (особенно в [104]) к «распространению идей Шарлье на квазинепрерывные модели флуктуаций плотности с целью разработать замену для чрезмерно упрощенной оригинальной дискретной иерархической модели».

Это пожелание невозможно удовлетворить с помощью неслучайных фракталов, а вот случайным фракталам оно вполне по силам, что я и намерен продемонстрировать.

Нестратифицированные условно-космографические фрактальные миры

Как я уже указывал, астрономы вряд ли стали бы  возражать против идеи условности, и будь за ней признаны хоть какие-нибудь достойные внимания следствия, идея эта вскоре превратилась бы в банальность и общее место. Я берусь доказать, что идея условности представляет собой не просто формальное уточнение принципа, а его подлинное обобщение – именно с этой целью я столь подробно описываю в главах с 32 по 35 некие конструкции, обладающие следующими свойствами:

·  Они индуцируют нулевую глобальную плотность.

·  Они удовлетворяют условному статистическому космографическому принципу.

·  Они не удовлетворяют никакой другой форме космографического принципа.

·  Они масштабно - инвариантны при любом значении .

·  По своей конструкции они не являются стратифицированными, однако индуцируют кажущуюся иерархическую структуру как следствие размерности .

·  Наконец, они согласуются с количественными данными.

Всеми этими свойствами, кроме последнего, обладает любая из моих моделей. Что касается количественного согласования, то при продвижении от главы 32 к главе 35 оно демонстрирует несомненную тенденцию к улучшению. Таким образом, стоит лишь расположить мои модели наиболее естественным образом, т.е. в порядке возрастания их сложности, и мы получим ряд со все более точным согласованием с наилучшими из имеющихся анализов экспериментальных данных.

Анонс

Поприветствовав таким образом прекраснейшие виды, открываемые нашему изумленному взору совершенно рандомизированными фракталами, мы сдержим наш порыв и не устремимся немедленно к созерцанию этих моделей, поскольку они встретят нас кое-какими математическими сложностями, к которым мы еще не готовы. В процессе подготовки неплохо было бы просмотреть главы с 23 по 30, в которых я обещаю держаться вблизи сравнительно знакомых нам вероятностных берегов.

 

1
Оглавление
email@scask.ru