Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ДОПОЛНЕНИЕ, ВОШЕДШЕЕ ВО ВТОРОЕ ИЗДАНИЕ (ДЕКАБРЬ 1982)Куршевельский семинар: вместо предисловия Между отправкой книги в печать и ее действительной публикацией, и затем в течение того краткого времени, за которое разошелся первый тираж, фрактальная геометрия отнюдь не стояла на месте. Все быстрее внедрялась она в те области, где ее уже приняли, и даже проникла в несколько новых.
Я, в частности, организовал недельный семинар по фракталам, который прошел в июле 1982 г. в городке Куршевель (Франция), и на котором были впервые представлены многие новые разработки. Главной целью настоящего дополнения является обобщение этих результатов и некоторых других, тесно с ними связанных. Некоторые источники (помеченные в дополнительном списке литературы звездочкой *) привлекают внимание к другим работам, представленным на семинаре. Вообще, становится трудно поверить, что всего несколько лет назад фрактальной геометрией природы кроме меня и нескольких моих ближайших сотрудников не занимался практически никто. Теперь же я, в лучшем случае, могу лишь (с помощью списка дополнительной литературы) обратить внимание читателя на вышедших на нашу сцену новых блестящих актеров. Темы в дополнении располагаются приблизительно в том же порядке, что и в главном эссе. Фрактал: определение К сожалению, этой скучной темы нам избежать не удастся, однако на сей раз, она занимает милосердно мало места. Термин «хаусдорфова размерность», к немалой моей досаде, применяется теперь безо всякого разбору и к размерностям, перечисленным в главе 39, и ко всевозможным их вариантам. То же можно сказать и о «размерности Минковского», термине, который я однажды использовал на с. 164 эссе «Objects fractals» (1975) для обозначения размерности Булигана. Дело, очевидно, в том, что определенные неанглоязычные статьи, авторы и темы которых благодаря моей работе перестали наводить страх на научную общественность, приобрели некоторое влияние, вследствие чего им стали приписывать – причем зачастую понаслышке! – всевозможные достижения … и прегрешения. Другие авторы бросились в
противоположную крайность, сделав чрезмерно большой упор на методах, чаще всего
используемых для оценки размерности К сожалению, большинство вышеупомянутых реакций на «Фракталы» 1977 г. проявились слишком поздно. Знай я обо всем этом раньше, я, пожалуй, вернулся бы в настоящем эссе к подходу, хорошо зарекомендовавшему себя в «Objets fractals» (1975), т.е. отказался бы от поисков педантичного определения для термина «фрактал» и использовал бы «фрактальную размерность» в качестве общего термина, применимого ко всем вариантам размерностей, перечисленным в главе 39, а для каждого конкретного случая подбирал бы определение, наиболее подходящее в данной конкретной ситуации. Однородная фрактальная турбулентность Глава 11 этого эссе написана
исключительно с целью выразить мое основное предположение относительно
турбулентности, которое заключается в том, что турбулентность в вещественном
пространстве представляет собой феномен на несущем множестве размерности Численные расчеты, призванные подтвердить справедливость этого предположения, еще не завершены (см. [624, 625]). Кроме того, не так давно в [633] был предложен совершенно иной подход, в котором удлинение и свертывание вихрей из главы 10 исследуется с помощью методов, разработанных для исследования полимеров (глава 36), и предполагается наличие связи между размерностями турбулентности и полимерных структур. Разломы в металлах и фракталы [652] Неологизмы, как мы заметили в главе 1, требуют аккуратного к себе отношения: изобретая их, следует избегать возможного конфликта значений. Из поверхностного рассмотрения можно заключить, что, хотя поверхность разлома стекла, скорее всего, не фрактальна, многие поверхности разлома камней и металлов почти наверняка фрактальны. Руководствуясь этим неформальным предположением, можно сделать столь же неформальный вывод, что между терминами фрактал и разлом серьезного конфликта возникнуть вроде бы не должно. В работе [652] мы подкрепляем это
неформальное ощущение многочисленными экспериментальными данными, полученными
при испытаниях на растяжение образцов из сталей 1040, 1095 и Напомним, что в главах 5 и 28 мы пользовались береговыми линиями островов и вертикальными сечениями. К сожалению, в естественных поверхностях разлома острова не наблюдаются, а определение вертикали (т.е. такого направления, при котором высота точки является однозначной функцией от ее положения на горизонтальной плоскости) очень редко подходит к какому-либо направлению. Тем не менее, мы вполне можем
определить неформальную вертикаль с помощью условия, согласно которому высота
точки будет однозначной функцией для «большинства» точек. Затем мы проводим
спектральный анализ высот прямолинейных горизонтальных сечений и строим график
логарифма спектральной энергии на частотах, превышающих Кроме того, оказывается полезным создавать искусственные «острова», «разрезая» образец параллельно почти горизонтальным плоскостям (при подготовке образца его сначала покрывают никелем с помощью метода химического восстановления, а затем закрепляют на эпоксидном основании методом вакуумной пропитки). Далее, используя мерный стержень некоторой фиксированной длины, мы определяем площадь каждого острова и его периметр на оцифрованном изображении и строим дважды логарифмические графики (как показано в главе 12) для того, чтобы убедиться в правильности нашего анализа фрактальных размерностей. Взглянув на рисунки на с. 597
(слева и в центре), читатель может самостоятельно убедиться в том, что многие
поверхности разлома укладываются во фрактальную модель с поразительной
точностью: оба графика почти прямолинейны, а их угловые коэффициенты дают, в
сущности, одинаковые размерности Перефразируя замечание, приведенное на с. 164 по поводу рис. 169, можно сказать, что не много существует металлургических графиков, которые учитывали бы все доступные данные в столь обширном диапазоне размеров, и были бы при этом хоть приблизительно такими же прямолинейными.
Экспериментальные данные
оказываются настолько хороши, что мы можем сразу же перейти к более тонкому
сопоставлению. Согласно наблюдениям, значения разности Однако расхождение может быть
вызвано и вполне реальными причинами. По сути дела, почти идентичность значений
Альтернативная причина конфликта
размерностей заключается в том, что поверхность разлома может быть изотропной,
но не самоподобной – в этом случае величина Для определения связи размерности
Поскольку факты установлены,
невредно было бы поразмышлять об их возможных причинах. Мы полагаем, что разлом
можно рассматривать как некую нетипичную форму перколяции. Известно, что, по мере
того, как образец растягивается в разные стороны, полости, которые неизбежно
присутствуют в образце вокруг посторонних включений, увеличиваются в размерах;
в конце концов, эти полости сливаются между собой и разделяют образец на части.
Если бы увеличение размеров той или иной полости не зависело от места ее
расположения, мы получили бы перколяцию, подобную описанной в главе 13.
Следовательно, размерность поверхности разлома принимала бы некое универсальное
значение, не зависящее от материала. В действительности же, как только исходная
полость дорастет до слияния с соседними полостями, возрастает нагрузка на
оставшиеся связи и последующая скорость роста полости изменяется в зависимости
от ее положения в образце. Эти изменения, безусловно, напрямую зависят от
структуры материала, и, следовательно, размерность Формы облачных и дождевых областей [646, 648] Глядя на замечательное соотношение Лавджоя, связывающее площадь и периметр облаков (см. рис. 169), невольно задаешься вопросом, нельзя ли в этом случае проделать то же, что мы проделали в главе 28 с земным рельефом, - я имею в виду построение фрактальных карт облачных и дождевых областей, которые нельзя будет ни вооруженным глазом, ни с помощью каких-либо измерений отличить от настоящих метеорологических карт. Важный ингредиент для случая дождевых областей находим у самого Лавджоя [646], который обнаружил, что промежутки между выпадениями осадков следуют в точности тому же гиперболическому распределению вероятностей, что и разрывности в изменении цен на товарных биржах согласно [341] (см. главу 37). Наше с Лавджоем совместное исследование [648] построено именно на этом фундаменте. Мы показываем, что гиперболически распределенные разрывности вполне согласуются с широко известным наблюдением, что разрывности в выпадении осадков возникают вдоль почти прямолинейных «фронтов». Для сохранения масштабной инвариантности вводится соответствующий перечень показателей, напоминающий те, что используются в теории критических феноменов, и в еще большей степени показатели турбулентности, предложенные в моей работе [387]. Полученные результаты, надо сказать, вызывают самые положительные эмоции. Масштабная инвариантность, фракталы и землетресения [637, 638, 639, 619] В главе 28 мы говорили о том, что земной рельеф представляет собой масштабно-инвариантную фрактальную поверхность и его можно генерировать посредством наложения грубых «ошибок». Тем, кто согласен с подобными утверждениями, гораздо легче принять идею того, что землетрясения (которые представляет собой не что иное, как динамические изменения рельефа) самоподобны, т.е. закономерности, описывающие время их возникновения, территориальный охват и силу, не связаны с каким-либо особым масштабом, а геометрия землетрясений фрактальна. Идея эта является главным посланием, которое вынесет для себя интересующийся фракталами читатель из ознакомления с работами [637, 638, 639, 619] (рекомендую). А для усмирения гордыни советую подумать о том, что масштабную инвариантность землетрясений обнаружил Омори еще сто лет назад; впрочем, авторы большинства статистических исследований землетрясений по-прежнему настаивают на том, что возникновение землетрясений следует пуассоновскому распределению. Что ж, вряд ли следует ожидать чего-то хорошего (о чем я уже рассуждал в главе 42), когда наука уступает общественному давлению, которое поощряет моделирование и теоретизирование и презирает «простое» описание без «теории». Фрактальные границы в литиевых аккумуляторах [644, 645] Электрическому аккумулятору полагается хранить электроэнергию в больших количествах и выдавать ее с нужной скоростью. Так как остальные характеристики зафиксированы, аккумулирующая способность зависит только от объема аккумулятора, скорость же разрядки является характеристикой поверхностей. Об этом знает всякий, кто знаком с фракталами (см. главы 12 и 15), и отсюда же Ален Ле Меоте заключил, что достижение баланса между аккумулирующей способностью и скоростью разрядки являет собой фрактальную задачу. Поскольку нет никакой возможности реализовать на практике аккумулятор, поперечное сечение которого являлось бы терагоном Пеано (таким, например, как на рис. 106), Ле Меоте с сотрудниками [645] проводил теоретические исследования всевозможных реалистичных конструкций и изучал настоящие аккумуляторы. Поразительна эффективность фрактальной геометрии. Критические перколяционные кластеры Перколяция на решетках: испытание модели из главы 13. Указанная фрактальная модель контактных кластеров в бернуллиевой перколяции, предложенная в главе 13, прямо-таки напрашивается на экспериментальную проверку. Спешу вас обрадовать: просьба удовлетворена. В работе [642] определено число
узлов в кластере на расстоянии от начала координат, меньшем Перколяция в тонких пленках золота и свинца. Бернуллиева перколяция является, безусловно, математическим процессом. Хаммерсли вводит ее в надежде, что с ее помощью можно будет проиллюстрировать и тем самым прояснить многие природные феномены. Применимость фрактальной геометрии к бернуллиевой перколяции была опробована на примере гнусного золота [668] и благородного свинца [641]. Исследователи Низколакунарные фрактальные модели некоторых формальных пространств в физике [630] В статистической физике считается, что иногда полезно постулировать то или иное пространство с дробной размерностью. Математиков же такие пространства выводят из душевного равновесия: мало того, что эти пространства никто нигде не строит, никто даже не берет на себя труд доказать их существование и единственность. Тем не менее, физики получают весьма существенные результаты, исходя из допущения, что упомянутые пространства действительно существуют и вдобавок обладают определенными сильными и желательными свойствами: они инвариантны при смещении, а их интегралы количества движения и рекуррентные соотношения можно получить из евклидовых пространств с помощью формального аналитического продолжения. Пространства с дробной размерностью способны привести исследователя фракталов в замешательство. С одной стороны, существует большое количество альтернативных фрактальных интерполяционных пространств, и, следовательно, можно говорить о неопределенной интерполяции. С другой стороны, фракталы, которые мы в работе [165] применили для описания физических явлений, вовсе не являются инвариантными при смещении. В этом отношении может создаться впечатление, что фракталы не так хороши, как постулированные пространства с дробной размерностью. Решение этой проблемы было подсказано аналогичной критикой, направленной в адрес моей первой модели распределения галактик. На тот случай, когда для фрактала невозможна точная инвариантность при смещении, в главах 34 и 35 показано, что можно подойти к инвариантности сколько угодно близко, придав достаточно малое значение лакунарности. С этой точки зрения в работе [630] рассмотрена некая последовательность ковров Серпинского (см. главу 14), лакунарность которых стремится к нулю. Вычислены некоторые физические свойства и показано, что предельные фракталы с нулевой лакунарностью идентичны по своим свойствам постулированным пространствам с дробной размерностью. Салфетка Серпинского: Игрушка для физиков Легко управляемые модели настолько милы сердцу физика, что любая конструкция, обещающая возможность выполнения вычислений без необходимости в приближениях привлекает самое широкое внимание. Среди разветвленных фигур, рассмотренных в главе 14, наиболее важной является салфетка Серпинского, однако с ней и труднее всего работать. Тем не менее, манипуляциям она не поддается. Некоторые такие манипуляции, забавные и полезные, проведены в работах [663, 656, 657, 617]. Вопреки своему обыкновению, я выбрал для обозначения этой фигуры термин (салфетка Серпинского), не имеющий прямого французского эквивалента. Составители математического словаря не поняли, что под словом gasket я имел в виду ту деталь двигателя, которая предотвращает просачивание жидкости, а обычный словарь отправил их к кораблям и веревкам, т.е. к baderne и garcette. Поскольку смысл моего термина никак не мог соответствовать этим толкованиям, термин переопределили и обозначили им дополнение к тому, что он обозначал изначально! На мой взгляд, здесь лучше подошло бы другое французское слово tamis, т.е. «сито» или «решето». Клеточные автоматы и фракталы Для того чтобы показать, что глобальный порядок может быть порожден силами, действующими исключительно между соседними элементами, я придумал пример, описанный на с. 452. Вскоре мне указали на то, что в моем примере действует так называемый «клеточный автомат» в том виде, в каком этот термин определен Джоном фон Нейманом (см. [621]). Улам показал (снова см. [621]), что выход такого автомата может быть очень сложным и выглядеть случайным. В других работах [669, 670, 667] показано, что этот выход может быть и фрактальным. Итерации отображения В [650] включено много иллюстраций, для которых не хватило места в главе 19, и дополнительных наблюдений. Выход статьи [401] несколько задержался и ожидается в 1983 г. Два важных наблюдения из главы 19 нашли теперь математическое подтверждение. В работах [628, 627] путем
отображения множества внешних точек В [659] доказано, что хаусдорфова
мера дракона Жюлиа является аналитической функцией от параметра Квадрирующие отображения в кватернионах В главе 19 установлено, что
свойства отображения Против кватернионов имеются и
возражения. Одно из них, например, заключается в следующем: комплексные числа
вводят пространство Для иллюстрации топологических взаимосвязей фрактальных репеллеров квадратичного отображения в кватернионах в работе [655] разработаны новые компьютерно – графические методы. Множества всех кватернионов, не уходящих при итерациях в бесконечность, рассматриваются в трехмерных сечениях. Сечения таких множеств комплексной плоскостью являются фрактальными драконами, описанными в главе 19. Некоммутативность же умножения
кватернионов совершенно неожиданно превратилась в большое преимущество. Для
объяснения смысла этого преимущества рассмотрим рис. С5. Вопрос: соединяются ли
друг с другом в пространстве кватернионов все или хотя бы некоторые
темно-желтые области дракона? Ответ: в общем случае, каждый из вариантов
записи, В качестве менее запутанного примера рассмотрим рисунок, помещенный на с. 655; он представляет собой несколько адаптированный вариант иллюстрации из [655] и изображает простой случай с циклом, равны 4. Каждый большой сегмент дракона, полученный при сечении его комплексной плоскостью, вложен в соответствующий сегмент пространственной фигуры. В данном примере большие пространственные сечения являются почти инвариантными при вращении; они окружены многочисленными нетугими поясами, соединяющими малые сечения дракона. На рис. 8 представлен другой пространственный фрактал, полученный приблизительно таким же способом. У Стейна [662] можно найти еще несколько подобных иллюстраций. Универсальность и хаос: С. Латте, современник Фату и
Жюлиа, выделил отношение четвертого порядка полиномов, итерации которых
«хаотичны» на всей плоскости, т.е. не притягиваются ни к какому меньшему
множеству. Этот пример побуждает нас заняться поисками хаотического поведения в
отображениях низшего порядка. Кроме того, в настоящем разделе рассматриваются
классы универсальности для формы островов при Отображение Наблюдается очень интересная
форма «универсальности»: «молекулы-острова» на рис. 12 принимают в точности ту
же форму, что и при квадратичном отображении. То есть иллюстрации 12 и 268 –
269 построены из одинаковых «кирпичей». В открытом диске Вычисление можно упростить
следующими допущениями. Множества Жюлиа отображения Классы «универсальности» Кроме того, Когда локальное поведение
отображения
|
1 |
Оглавление
|