Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
20 ФРАКТАЛЬНЫЕ АТТРАКТОРЫ И ФРАКТАЛЬНЫЕ («ХАОТИЧЕСКИЕ») ЭВОЛЮЦИИЭта глава имеет своей целью познакомить читателя с одной теорией, которая развивалась вне всякой связи с фрактальными множествами и все же оказалась буквально пронизана ими. Чаще всего ее называют «теорией странных аттракторов и хаотической (или стохастической) эволюции», однако в тексте главы вы, я надеюсь, найдете причины, побудившие меня дать этой теории новое имя (см. заголовок).
Для того чтобы попасть в настоящее эссе упомянутой теории, достаточно было всего лишь быть так или иначе связанной с фракталами; я же считаю оправданным посвятить ей целую главу. Первое оправдание (практическое): эта теория почти не требует какого бы то ни было особого представления, так как бóльшую часть ее основных положений можно рассматривать просто как новую интерпретацию выводов, полученных нами в главах 18 и 19. Во-вторых, теория фрактальных аттракторов помогает – путем противопоставления – прояснить некоторые особенности фрактальной геометрии природы. В самом деле, моя работа связана, в основном, с формами, присутствующими в реальном пространстве, с формами, которые можно увидеть, пусть даже и в микроскоп; теория аттракторов же имеет дело исключительно с эволюцией во времени расположения неких точек в невидимом и абстрактном репрезентативном пространстве. Особенно силен этот контраст оказывается в контексте турбулентности – моя первая большая тема (работу над ней я начал в 1964 г.), где я использовал ранние формы фрактальных методик и (вполне независимо от них) теорию странных аттракторов, которая вполне всерьез сочетается с изучением турбулентности в работе [505]. До сих пор эти два подхода еще не пересеклись, но ждать осталось недолго. Тем, кто интересуется социологией науки, несомненно, покажется занимательным следующий факт: в то время как мои прецедентные исследования, связывающие математических чудовищ с реальными физическими структурами, встречаются с ощутимым сопротивлением, чудовищные формы абстрактных аттракторов воспринимаются с завидной невозмутимостью. Третий довод в пользу необходимости разговора о фрактальных аттракторах связан с тем, что соответствующие эволюции выглядят «хаотическими» или «стохастическими». Как станет ясно из глав 21 и 22, многие ученые сомневаются в уместности применения случайного в науке; теперь же появляется надежда на оправдание случайности с помощью фрактальных аттракторов. И наконец, те читатели, кто несколько глав (или пару эссе) назад согласился с моим утверждением о том, что многие из природных проявлений могут быть описаны только с помощью неких множеств, считавшихся ранее патологическими, возможно, с нетерпением ожидают перехода от «как» к «почему». Думаю, приведенные ранее описания и демонстрации дают представление о том, как легко в некоторых случаях оказывается подсластить упомянутые в предыдущих главах геометрические пилюли, чтобы их легче было проглотить. Я же хочу привить читателю вкус именно к фракталам – независимо от того, насколько горьким кажется этот вкус большинству зрелых ученых. Кроме того, я искренне убежден (и еще вернусь к этому в главе 42), что псевдообъяснение посредством подслащивания просто-напросто неинтересно. Таким образом, важность объяснения, судя по всему, сильно преувеличена, и мы будем прибегать к нему лишь в тех случаях, когда имеющееся объяснение действительно интересно – как, например, в главе 11. Вдобавок ко всему, я подозреваю, что когда фрактальные аттракторы лягут в основу фрактальной геометрии видимых естественных форм, появится много новых более детальных и убедительных объяснений. Так как преобразования с аттракторами нелинейны, наблюдаемые фракталы, скорее всего, окажутся не самоподобными. Это замечательно: мне кажется, что использование фрактального аналога прямой для описания феноменов, управляемых нелинейными уравнениями, выглядит несколько парадоксально. Масштабно-инвариантные фракталы, хорошо объясняющие естественные феномены, могут выступать лишь как локальные приближения нелинейных фракталов. Понятие аттрактора Настоящая глава опирается, по большей части, на одно давнее и весьма основательно позабытое наблюдение Анри Пуанкаре: «орбиты» нелинейных динамических систем имеют свойство притягиваться к странным множествам, которые я определяю как нелинейные фракталы. Рассмотрим для начала простейший аттрактор – точку. «Орбита», определяемая движением маленького шарика после помещения его в воронку, начинает с некоторой спиралевидной траектории, точная форма которой зависит от исходных положения и скорости шарика, однако, в конце концов, сходится к горловине воронки; если диаметр шарика превышает диаметр отверстия воронки, то он там и останется. Для нашего шарика начало горловины воронки является устойчивой точкой равновесия, или устойчивой неподвижной точкой. В рамках достаточно удобной альтернативной описательной терминологии (которую, естественно, не следует интерпретировать с антропоцентрических позиций) горловину воронки можно назвать притягивающей точкой, или аттрактором. В физической системе устойчивыми и притягивающими могут быть также окружность или эллипс. Например, мы все полагаем (и даже пламенно надеемся – хотя никто из нас не проживет достаточно долго для того, чтобы это имело хот какое-то значение), что солнечная система устойчива, подразумевая, что если орбите Земли и суждено претерпеть какие- либо возмущения, то она, в конце концов «притянется» назад на свою теперешнюю колею. В более общем виде, динамическую
систему принято определять следующим образом: состояние системы в момент
времени Основное различие между такими
системами заключается в геометрическом распределении значений Понятие репеллера Мы можем также поместить наш шарик в положение неустойчивого равновесия – например, на кончике карандаша. Если начальное положение не совпадает в точности с точкой равновесия, то шарик словно отталкивается прочь и достигает состояния устойчивого равновесия где-то в другом месте. Множество всех положений неустойчивого равновесия (вместе с их предельными точками) называется отталкивающим множеством, или репеллером. Во многих случаях аттракторы и
репеллеры меняются местами при смене знаков в уравнениях. Имея дело с силой
тяжести, достаточно изменить направление ее действия. Рассмотрим, например, в
основном горизонтальную поверхность с прогибами в обоих направлениях.
Предположим, что сила тяжести направлена вниз, поместим шарик на верхней
стороне поверхности и обозначим притягивающий прогиб буквой Фрактальные аттракторы. «хаос» Бóльшая часть элементарной
механики имеет дело с динамическими системами, аттракторами которых являются
точки, почти окружности и другие фигуры евклидовой геометрии. Однако в
действительности такие фигуры представляют собой редкие исключения, и поведение
большинства динамических систем несравнимо более сложно: их аттракторы и
репеллеры имеют явную тенденцию к фрактальности. В нескольких следующих
разделах описываются примеры систем с дискретным временем, Аттрактор-пыль. Коэффициент
Фейгенбаума Согласно П. Грассбергеру
(источник – препринт статьи), аттрактор «Хаос». Ни одна точка
множества Самоаффинные деревья. Расположив
множество Комментарий. В идеале теории следовало бы сосредоточиться на интересных по своей сути и реалистичных (но простых) динамических системах, аттракторами которых являются подробно изученные фрактальные множества. Имеющаяся же литература по странным аттракторам – пусть даже она чрезвычайно значима – весьма далека от этого идеала. Рассматриваемые в ней фракталы, как правило, недостаточно хорошо изучены, очень немногие из них действительно интересны, а большинство никак нельзя считать решениями сколь бы то ни было мотивированных задач. Поэтому я был вынужден самостоятельно изобретать «динамические системы», которые бы поставили новые вопросы – для того, чтобы получить на них давно известные и удобные ответы. Я придумывал задачи таким образом, чтобы их решениями стали знакомые фракталы. Больше всего меня удивляет то, что эти системы оказались еще и интересными. Самоинверсные аттракторы Согласно главе 18, множества Обращение «времени» Дальнейшие поиски систем с
интересными фрактальными аттракторами привели меня к системам, аттракторы
которых геометрически стандартны, а вот репеллеры оказываются весьма занятными.
Эти два множества легко можно поменять местами, тем самым пустив время вспять,
при условии, что операции динамической системы допускают существование обратных
операций (орбиты не сливаются и не пересекаются), так что, зная положение точки
Попытаемся, например, обратить Разложимые динамические системы [398] Потребуем, чтобы одна из
координат состояния Вообще говоря, в примерах,
стимулировавших это обобщение, последовательность Роль «странных» аттракторов Сторонники «странных» аттракторов
выдвигают в свою защиту следующие два соображения. «Фрактальные» или «странные»? Все известные «странные»
аттракторы представляют собой фрактальные множества. Для многих «странных»
аттракторов существуют оценки размерности С. Смейл представлял свой
знаменитый аттрактор, называемый соленоидом, дважды. Оригинальное определение
было чисто топологическим (размерность Обратное утверждение. Являются ли все фрактальные аттракторы странными – вопрос семантики. Все больше авторов согласны со мной в том, что аттрактор, как правило, можно считать странным, если он фрактален. Мне такое отношение представляется вполне здравым, если учесть, что слово «странный» выступает как синоним слов «чудовищный», «патологический» и других подобных эпитетов, которыми некогда награждали отдельные фрактальные множества. Однако прилагательному «странный» иногда придается некий особый терминологический смысл настолько, надо сказать, особый, что аттрактор Зальцмана – Лоренца характеризуется не просто как «странный», но как «странно – странный». В этом свете «странность» аттрактора связывается главным образом с нестандартными топологическими свойствами, в то время как нестандартные фрактальные свойства просто сопутствуют им в качестве «нагрузки». Замкнутая кривая с двойными точками не является в этом смысле «странной», какой бы смятой она ни была: это значит, что большинство из исследованных мною фрактальных аттракторов нельзя считать странными. При таком определении термина «странный» рассуждения в предыдущем разделе теряют всякую привлекательность. Однако если модифицировать понятие странности с тем, чтобы оно из топологического стало фрактальным, то эту привлекательность можно вернуть. Вот почему я считаю, что победы в споре достойны те, кто определяет «странное» как «фрактальное». А поскольку они и в самом деле побеждают, я не вижу большого смысла в сохранении термина, необходимость в котором исчезла в тот момент, когда я показал, что фракталы не более странны, чем, скажем, горы или береговые линии. Кроме того, не стану скрывать: к термину «странный» я испытываю какую-то личную неприязнь.
Рис. 282 и 283. Притяжение к фракталам Приведенные здесь фигуры
иллюстрируют длинные орбиты последовательных состояний двух разложимых
динамических систем. Нагрудник фараона на рис. 283 представляет собой
самоинверсное (см. главу 18) множество, основанное на четырех инверсиях,
подобранных таким образом, чтобы предельное множество Определяющий индекс в этих случаях выбирается из четырех (или, соответственно, двух) возможностей с помощью псевдослучайного алгоритма, примененного 64 000 раз. Несколько первых точек на рисунке опущены. Области в окрестностях точек заострения и самопересечения заполняются чрезвычайно медленно.
|
1 |
Оглавление
|