Главная > Фрактальная геометрия природы
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

7 ПОКОРЕНИЕ ЧУДОВИЩНЫХ КРИВЫХ ПЕАНО

Обсуждая в предыдущей главе обобщенные кривые Коха без самопересечений, мы не случайно ограничились значениями . Когда размерность  достигает 2, фрактальные кривые претерпевают значительные качественные изменения.

Будем исходить из предположения, что терагоны не имеют самопересечений, хотя самокасание допускается. В этом случае одним из признаков достижения размерности  можно считать то, что точки самокасания становятся асимптотически неизбежными. Главным же признаком является неизбежность заполнения предельной кривой некоторой «области» плоскости, т. е. некоторого множества, состоящего из дисков (заполненных окружностей).

Это двойственное заключение не является следствием пока еще поправимой нехватки воображения со стороны математиков. Оно проистекает из одного фундаментального принципа, сыгравшего центральную роль в кризисе математики 1875 - 1925 гг.

«КРИВЫЕ» ПЕАНО, ДВИЖЕНИЯ И ПРОХОЖДЕНИЯ

Упомянутые предельные кривые, представленные на иллюстрациях в конце главы, называются кривыми Пеано, поскольку первая из них была построена Пеано в 1890 г. [465]. Их также называют заполняющими плоскость. Для таких кривых остается справедливым формальное определение размерности , хотя и не из тех соображений, из каких нам хотелось бы. С математической точки зрения, кривая Пеано — всего лишь несколько необычное представление области или участка плоскости, а все классические определения единодушны в том, что размерность такого участка равна 2. Иными словами, человеку благоразумному следует избегать употребления термина кривая, заполняющая плоскость.

К счастью, большая часть «кривых» Пеано, включая и полученные путем рекурсивного построения Коха, поддается естественной параметризации с помощью скалярной величины , которую можно назвать «временем». Имея дело с такими кривыми, мы вполне можем (не опасаясь ревнителей математической строгости) использовать термины «движения Пеано», «заполняющие плоскость движения», «движения, проходящие по всем плиткам» или просто «прохождения по плиткам» (о плитках и пертайлинге мы поговорим позже в этой же главе). И мы не замедлим воспользоваться этими терминами, когда наступит подходящий момент; хочу только напомнить, что жанр эссе, согласно своей специфике, ни в коей мере не подразумевает полного освещения того или иного вопроса.

КРИВЫЕ ПЕАНО В РОЛИ ЧУДОВИЩ

«Все шатается и рассыпается! Очень трудно передать словами тот эффект, который произвели результаты [Джузеппе] Пеано на все математическое сообщество. Такое ощущение, что кругом одни развалины, что все математические концепции внезапно потеряли всякий смысл» [573]. «[Движение Пеано] невозможно представить себе интуитивно; его можно понять лишь с помощью логического анализа» [190]. «Некоторые математические объекты — такие, например, как кривая Пеано — совершенно противоречат здравому смыслу... просто нелепы» [109].

ИСТИННАЯ ПРИРОДА КРИВЫХ ПЕАНО

Я утверждаю, что приведенные цитаты лишь доказывают тот факт, что ни один из тех математиков так и не удосужился тщательно рассмотреть аккуратно построенную кривую Пеано. Кто-нибудь менее добродушный мог бы сказать, что эти цитаты демонстрируют полное отсутствие геометрического воображения.

Я также утверждаю, что после внимательного и непредвзятого изучения и осмысления терагонов Пеано становится весьма затруднительным и дальше не видеть связи между ними и разнообразными природными проявлениями. Эта глава посвящена кривым без самопересечений, т. е. кривым, терагоны которых избегают самокасаний. В главе 13 мы поговорим о кривых с умеренным числом самокасаний. Первыми на предмет устранения самокасаний следует рассмотреть терагоны, заполняющие решетку (например, прямые с целочисленными координатами, параллельные координатным осям).

РЕКИ И ДРЕВОВИДНАЯ СТРУКТУРА ВОДОРАЗДЕЛОВ

Изучая всевозможные терагоны Пеано, я обратил внимание на то, что каждый из них представляет собой некоторую комбинацию из двух деревьев (или двух скоплений деревьев), допуская бесконечное разнообразие конкретных интерпретаций. Особенно хорошо эти деревья видны на «прохождении снежинки» — кривой Пеано моего изобретения (см. рис. 105). Глядя на рисунок, мы легко можем представить себе, что там изображено, скажем, скопление кустарников, растущих из нижней трети снежинки Коха и взбирающихся по ее стенкам. Другому эта картинка может показаться похожей на нарисованную плохо очиненным карандашом карту бассейна какой-нибудь большой реки — многочисленные мелкие притоки сливаются в более крупные и в конце концов вливаются в главную реку, протекающую вдоль нижней трети снежинки. Из последней интерпретации немедленно следует, что кривые, отделяющие реки друг от друга, составляют в совокупности древовидный водораздел. Разумеется, реки и водоразделы могут меняться местами.

Какой бы простой и очевидной ни казалась эта новая водораздельно- речная аналогия, она оказалась возможной только после того, как мы перестали считать кривые Пеано чем-то заведомо патологическим. В самом деле, если мы хотим, чтобы древовидная структура, составленная из рек исчезающей ширины, собрала всю воду с некоторого участка, ей просто не остается ничего другого, как проникнуть во все точки этого участка. Всякий, кто отправится прогуляться по берегам всех рек данной системы, совершит заполняющее плоскость путешествие. Не верите? Спросите у любого ребенка!

Вооружившись интуицией, подкрепленной рис. 104, мы с легкостью обнаружим аналогичные сопряженные конструкции во всех тера- гонах Пеано. Даже грубый остров с рис. 95 приобретает в этом свете некое осмысленное содержание. Пронизывающие его тонкие ленты воды нельзя принять за фьорды, как бы мы ни напрягали наше воображение, однако их вполне можно рассматривать как речную систему.

Когда из изучения рек вырастет настоящая наука, ее следует назвать потамологией — термин, созданный Морисом Парде. Однако, по трезвом размышлении, приходится признать, что изучение рек — это лишь часть более общей науки о воде, гидрологии, во владения которой на протяжении этого эссе мы еще не раз наведаемся.

НЕИЗБЕЖНЫЕ КРАТНЫЕ ТОЧКИ ДЕРЕВЬЕВ И, КАК СЛЕДСТВИЕ, ДВИЖЕНИЙ ПЕАНО

Неожиданно находят очевидное объяснение и многие математические свойства кривых Пеано. Чтобы объяснить кратные точки, предположим, что некто начинает движение вдоль берега реки, являющейся частью дерева рек Пеано, и движется вверх или вниз по течению, обходя даже самые маленькие притоки (причем чем уже приток, тем быстрее движение). Очевидно, что в конечном счете наш путешественник придет в точку, которая находится на другом берегу напротив точки его отправления. А поскольку в пределе река бесконечно узка, то он по существу вернется в начальную точку. Таким образом, кратные точки на кривой Пеано представляются неизбежными не только с математически логической точки зрения, но и с позиций здравого смысла. Более того, эти точки всюду плотны.

Неизбежно также, что некоторые точки он посетит более чем дважды, так как в местах слияния рек совпадают по меньшей мере три береговых точки. Если все слияния ограничиваются только двумя реками, нет необходимости учитывать более чем тройную кратность. С другой стороны, если мы согласны иметь точки более высокой кратности, можно обойтись и без тройных точек.

Все утверждения, высказанные в предыдущих абзацах, доказаны, и, поскольку доказательства весьма деликатны и вызвали в свое время немало бурных дискуссий, сами свойства можно было бы, по всей видимости, отнести к «техническим подробностям». Если бы не одно «но». Кто теперь будет продолжать настаивать, что чисто логический подход к упомянутым свойствам имеет хоть какие-то преимущества перед моим интуитивным подходом, основанном на здравом смысле?

Как правило, реки Пеано представляют собой не стандартные фигуры, но фрактальные кривые. Это весьма удачно для нужд моделирования, так как все, что говорилось в главе 5 относительно неспрямляемости географических кривых, в полной мере касается и берегов рек. Больше того, среди приводимых Ричардсоном данных имеются сведения и о таких государственных границах, которые частично проходят по рекам и границам водоразделов. А в цитате из Штейнгауза [539] реки и вовсе упоминаются открытым текстом. Что касается водосборных бассейнов рек, то каждый из них может быть окружен замкнутой кривой, напоминающей береговую линию и составленной из участков границы водораздела. Бассейн любой крупной реки представляет собой совокупность бассейнов более мелких рек и притоков, вдоль и поперек исчерченную этими самыми реками и притоками, однако для исчерпывающего описания столь сложной на первый взгляд структуры нам необходимы всего лишь несколько заполняющих плоскость кривых, ограниченных кривыми фрактальными.

ДВИЖЕНИЕ ПЕАНО И ПЕРТАЙЛИНГ

Возьмем оригинальную кривую Пеано (см. рис. 95) и представим величину   как число в системе исчисления с основанием  вида  Значения времени с одинаковым первым «знаком» после запятой отобразятся на одну и ту же девятую часть исходного квадрата, значения с одинаковым вторым «знаком» отобразятся на одну и ту же восемьдесят первую () часть исходного квадрата и т. д. Таким образом, покрытие отрезка [0, 1] отображается на покрытие квадрата. Последовательные девятые доли линейных плиток отображаются на последовательные подплитки плоскости. А свойство отрезка, именуемое пертайлинг, т. е. рекурсивная и бесконечная разбиваемость на меньшие плитки, подобные целому отрезку [0, 1], отображается на аналогичное свойство квадрата. Различные движения Пеано, коими мы обязаны Э.Чезаро и Д. Пойа, отображают это свойство также и на всевозможные самоподобные покрытия треугольников.

В более общем смысле большинство движений Пеано порождают самоподобные покрытия плоскости. В простейшем случае существует некое основание , и мы начинаем с линейного пертайлинга, заключающегося в последовательном разбиении целого на -е доли. Однако прохождение снежинки, изображенное на рис. 104 и 105, подразумевает неравномерное разбиение интервала времени  [0, 1] сначала на четыре подынтервала длиной , затем на четыре подынтервала длиной , один — , два —  и два — .

ОБ ИЗМЕРЕНИИ РАССТОЯНИЯ ПЛОЩАДЬЮ

Движения Пеано нередко подразумевают весьма деликатные взаимоотношения между длиной и площадью, в которых эти понятия подчас меняются местами. Особенно характерно это для изометрического движения, т.е. такого, при котором временной интервал  отображается на площадь, равную длине  (Большинству движений Пеано присущи одновременно и изометрия, и пертайлинг, однако эти два понятия не следует смешивать.) Называя отображение временного интервала  плоским интервалом Пеано, мы подразумеваем, что вместо измерения расстояний через изменение значения времени, можно измерять их непосредственно на площади. Здесь, правда, возникает одна весьма существенная сложность — точки, расположенные напротив друг друга на разных берегах реки, совпадают в пространстве, но посещаются в разные моменты времени.

Определение «расстояния Пеано» может включать в себя только порядок посещений. Обозначим моменты первых посещений точек  и  через  и , а моменты последних посещений — через  и . Тогда левый интервал Пеано  определяется как отображение интервала , а правый интервал Пеано  — как отображение интервала . Длины этих интервалов определяют левое и правое расстояния как  и . Каждое из этих расстояний аддитивно, т. е. если расположить, скажем, три точки ,  и  в порядке их первых посещений, то мы получим

.

Другие определения интервала и расстояния различают точки реки и точки водораздела. Обозначим через  и  моменты первого и последнего посещения точки . Точка  считается точкой реки, если отображение интервала  ограничено этой точкой и кривыми водораздела. Последовательные посещения точки  располагаются друг против друга на противоположных берегах реки. Точка  считается точкой водораздела, если отображение интервала   ограничено этой точкой и реками.

В случае, если кривая Пеано представлена как общая граница между деревом рек и деревом водоразделов, пути, соединяющие точки  и , расположенные на противоположных берегах реки (т. е. вдоль водораздела), включают в себя наикратчайший общий путь. Представляется разумным при измерении расстояния между точками  и следовать как раз этим путем. Если не считать некоторых исключений, размерность   как дерева рек, так и дерева водоразделов строго меньше 2 и строго больше 1. Следовательно, наикратчайший путь нельзя измерить ни длиной, ни площадью, однако в типичных случаях он имеет нетривиальную хаусдорфову протяженность в размерности .

И еще. Очень важные дополнительные соображения относительно движений Пеано подробно изложены в пояснениях к нижеследующим рисункам.

Рис. 95. КВАДРАТИЧНОЕ ПОСТРОЕНИЕ КОХА С РАЗМЕРНОСТЬЮ : ОРИГИНАЛЬНАЯ КРИВАЯ ПЕАНО, ПРОХОЖДЕНИЕ КВАДРАТА

Заполняющая плоскость кривая Пеано, представленная на этом рисунке, является оригинальной кривой Пеано. Невероятно краткий алгоритм Джузеппе Пеано был графически воплощен в работе Мура [435] (которая получила, пожалуй, чрезмерно высокую оценку во «Фракталах» 1977 г.). На нашем рисунке кривая Пеано развернута на 45 градусов — тем самым эта «блудная» конструкция оказывается возвращенной в лоно кривых Коха, т. е. теперь генератор всегда одинаково размещается на сторонах терагона, полученного на предыдущем этапе построения.

Инициатором здесь выступает единичный квадрат (черный внутри), а генератор выглядит следующим образом:

Поскольку генератор — самокасающаяся кривая, получаемые в результате построения конечные острова Коха представляют собой скопления черных квадратов, словно вырезанных из бесконечной шахматной доски. После -го этапа построения терагон Коха выглядит как решетка из прямых с шагом ) = эта решетка заполняет квадрат, площадь которого равна 2, причем плотность линий быстро возрастает по мере того, как  (вполне достаточный пример этого однообразного узора показан на рисунке рядом с исходным черным квадратом).

На трех верхних картинках двусмысленность самокасаний устранена путем срезания соответствующих углов с сохранением общей площади.

Если четвертый этап построения данной кривой изобразить в том же масштабе, то мы увидим лишь сплошной серый фон, однако увеличенное изображение одной четвертой части, получающейся в результате береговой линии, вполне можно проследить взглядом (рискуя, правда, заработать при этом морскую болезнь). Глядя на этот рисунок, понимаешь, что люди имеют в виду, когда говорят, что предельная кривая Коха заполняет плоскость.

Было бы замечательно, если бы мы смогли определить в этом случае предельный остров по аналогии с островами Коха в главе 6, однако здесь это, к сожалению, невозможно. Любая выбранная наугад точка почти наверняка будет бесконечно колебаться между сушей и морем. Терагоны на поздних этапах построения пронизаны бухтами или реками настолько глубоко и однородно, что суша и вода делят любой квадрат среднего размера  (такого, что ) практически пополам!

Интерпретация. Предельная кривая Пеано устанавливает непрерывное соответствие между прямой и плоскостью. Математическая неизбежность самокасаний — классический результат. Новым является тот факт, что самокасания играют важную роль в моделировании природных феноменов.

Дальний порядок. Не зная о нисходящих каскадах, ответственных за построение наших конечных кривых Пеано, можно только изумиться тому необычайному дальнему порядку, который позволяет этим кривым избегать не только самопересечений, но и самокасаний. Что касается последнего, то весь порядок вообще держится только на жесточайшей дисциплине: малейшее послабление — и все насмарку!

<  А если совсем позабыть о дисциплине, то мы почти наверняка не получим ничего, кроме бесконечно повторяющихся самопересечений, поскольку полностью недисциплинированная кривая Пеано — это броуновское движение, о котором мы уже упоминали во второй главе и поговорим подробнее в главе 25.

Теорема Лиувилля и эргодичность. В механике принято представлять состояние сложной системы одной-единственной точкой в «фазовом пространстве». Известно, что в случаях применения к этому пространству уравнений движения каждая его область ведет себя следующим образом: ее протяженность (гиперобъем) остается инвариантной (теорема Лиувилля), однако ее форма меняется — область рассеивается и заполняет весь доступный объем с максимально возможной однородностью. Очевидно, что оба этих свойства находят отражение в том, как, с нашей легкой руки, ведет себя черный квадрат при построении кривой Пеано. Представляется интересным «копнуть» глубже и увидеть, что во многих упрощенных «динамических» системах, допускающих подробное изучение, каждая область рассеивается, трансформируясь во все удлиняющуюся и утончающуюся ленту. Интересно также было бы выяснить, не происходит ли дисперсия других систем по древовидным кривым Пеано вместо лент. ►

Рис. 98 и 99. КВАДРАТИЧНЫЕ ПОСТРОЕНИЯ КОХА С РАЗМЕРНОСТЬЮ : ПРОХОЖДЕНИЯ ТРЕУГОЛЬНИКА ПО ЧЕЗАРО И ПО ПОЙА И ИХ ВАРИАНТЫ

Простейшим генератором, какой только можно в этом случае вообразить, является ломаная, состоящая из  равных отрезков, угол  между которыми удовлетворяет условию . В предельном случае  генератор представляет собой отрезок прямой; случай  (проиллюстрированный в пояснении к рис. 71) порождает (помимо прочих) троичную кривую Коха. Генератор для предельного случая  показан ниже:

Используя этот генератор, можно построить невообразимое множество различных кривых Пеано (различия обусловлены формой инициатора и способом помещения генератора на предшествующий терагон). На рис. 98-102 дано несколько примечательных примеров.

< Кроме того, в главе 25 с помощью рандомизации всех кривых Пеано с данными  мы получим самое что ни на есть броуновское движение. ►

Прохождение треугольника по Пойа. Инициатор отрезок [0, 1], генератор — как на рисунке вверху. Генератор поочередно занимает правое и левое положение относительно терагона, причем его положение относительно начального отрезка (правое или левое) также поочередно меняется. Ниже показаны третий и четвертый этапы построения:

Терагоны напоминают квадратные куски диаграммной бумаги, запихнутые внутрь прямоугольного равнобедренного треугольника, один из катетов которого и есть исходный отрезок [0, 1]. Предельная кривая проходит по всей внутренней области треугольника.

Рис. 98. Прохождение Пойя по прямоугольному неравнобедренному треугольнику. Изменим генератор таким образом, чтобы он состоял из двух неравных отрезков, расположенных под прямым углом друг к другу. Читателю (в качестве упражнения) остается лишь придумать, как в этом случае построить кривую, избегающую самокасаний.

Прохождение треугольника по Чезаро. Инициатор — отрезок [0, 1], генератор — тот же, что и для прохождения по Пойа. Два следующих этапа построения приведены ниже (для большей ясности построения угол  на рисунке равен 85 градусов вместо ).

То есть на всех этапах с нечетными номерами генератор располагается справа от кривой; получаемый в результате терагон представляет собой решетку из прямых, параллельных диагоналям инициатора. На всех же этапах с четными номерами генератор располагается слева от кривой; прямые, составляющие решетку получаемого при этом терагона, оказываются параллельными сторонам инициатора. Кривая асимптотически заполняет прямоугольный равнобедренный треугольник, причем исходный отрезок [0, 1] является гипотенузой этого треугольника.

Рис. 99. На рисунке изображено прохождение квадрата, полученное соединением двух прохождений Чезаро с инициаторами [0, 1] и [1,0]. (И здесь угол  заменен углом  для ясности построения.)

Самоперекрытие. Каждый отрезок в решетках, покрываемых терагонами Чезаро, покрывается дважды. Конструкция содержит не только самокасания, но и самоперекрытия.

«Эффективность» заполнения плоскости. Одно экстремальное свойство расстояния Пеано - Чезаро. Кривая Пеано с рис. 95 отображает отрезок [0, 1] на квадрат с диагональю [0, 1] иплощадью 1/2. Такая же фигура покрывается и кривой Пойа. Однако кривая Чезаро заполняет всего лишь прямоугольный равнобедренный треугольник с гипотенузой [0, 1] и площадью 1/4. Для того, чтобы покрыть весь квадрат, необходимо отобразить по Чезаро два отрезка, [1, 0] и [0, 1]. Таким образом, из двух рассматриваемых кривых кривая Чезаро оказывается менее «эффективной». Более того, кривая Чезаро вообще самая «неэффективная» кривая Пеано без самопересечений на квадратной решетке. Однако благодаря этому обстоятельству, она — видимо, в качестве компенсации — обладает одним замечательным свойством: левое или правое расстояния Пеано (см. с. 93) между точками  и  оказывается большим или равным квадрату евклидова расстояния между этими точками:

; .

Для других кривых Пеано разница между расстоянием Пеано и евклидовым расстоянием может быть как положительной, так и отрицательной.

Задача Какутани - Гомори. Какутани (источник — частная беседа) предлагает выбрать  точек  внутри единичного квадрата  и рассмотреть выражение , в котором инфимум вычисляется по всем линиям, соединяющим точки  последовательно. Он доказывает, , но полагает, что этот предел не является наилучшим. В самом деле, Р. Э. Гомори сообщает (источник — частная беседа), что он получил уточненный предел . При доказательстве Гомори использует кривую Пеано-Чезаро следующим образом: (А) добавим к множеству точек  угловые точки квадрата, если они этому множеству еще не принадлежат; (В) расположим  точек  в порядке их первых посещений последовательностью из четырех кривых Пеано- Чезаро, построенных внутри квадрата вдоль его сторон; (С) убедимся, что удлинение цепочки на этапе (А) не повлекло за собой уменьшения ; D) убедимся, что каждое слагаемое  не уменьшается при замене его на ; (Е) . При использовании других кривых Пеано этапы (В) и (D) следует исключить.

Рис. 101 и 102. ПРОХОЖДЕНИЯ КВАДРАТА И ДРАКОНА

Генератор здесь тот же, что и для предыдущих кривых, однако незначительные, на первый взгляд, изменения в других правилах оказывают значительное влияние на результат.

Прохождение квадрата по Пеано, более поздний вариант.

Инициатор отрезок [0, 1], а второй, четвертый и шестой этапы построения выглядят следующим образом:

Эффективность. Экстремальное свойство. Эта кривая заполняет область, площадь которой равна 1, тогда как кривые на рис. 98 и 99, а также кривая дракона, которую мы рассмотрим ниже, покрывают лишь 1/2 или 1/4. Если терагоны лежат на прямоугольной решетке, покрываемая ими область не может превышать 1. Этого максимума она достигает лишь в случае терагонов без самопересечений. Иными словами, отсутствие самокасаний важно не только с эстетической точки зрения, а самокасающаяся кривая со срезанными точками самокасаний (как на рис. 95) не становится от этого эквивалентной кривой Коха без самопересечений.

Взяв только нечетные этапы построения данного прохождения квадрата и соединив средние точки последовательных отрезков терагонов (чтобы избежать самокасаний), мы возвратимся к кривой Пеано, вариант Гильберта.

Рис. 102. Кривая, заполняющая прямоугольную трапецию. Изменим генератор таким образом, чтобы он представлял собой ломаную, составленную из двух неравных отрезков под прямым углом друг к другу. Избегающее самопересечений построение аналогично построению кривой на предыдущем рисунке.

Дракон Хартера-Хейтуэя. (См. [162] и [95].) Инициатор — отрезок [0, 1], генератор — как в начале пояснения к рис. 98. Генератор поочередно занимает правое и левое положение относительно терагона. Единственное отличие от построения прохождения треугольника по Пойа заключается в том, что на всех этапах построения генератор помещается справа от начального отрезка кривой. Ниже показаны третий и четвертый этапы построения:

Последствия этого незначительного изменения выглядят весьма впечатляюще:

На этой иллюстрации нельзя различить саму кривую, мы видим лишь ее границу, которая называется кривой дракона. Таким образом, эта кривая Пеано имеет полное право называться прохождением дракона. Как и любая другая кривая Коха, инициатором которой служит отрезок [0, 1], дракон самоподобен. Кроме того, отчетливо видно, что дракон разделен на части, соединяющиеся между собой тонкими переходами. Эти части подобны друг другу, но не целому дракону.

Двойной дракон. Во «Фракталах» 1977 года отмечалось, что при таких «драконовских» правилах построения данной кривой более естественным инициатором представляется последовательность отрезков [0, 1] и [1,0]. Фигуру, которую в итоге заполняет кривая, я назвал двойным драконом. Эта фигура получила числовое представление в [272]. Выглядит она вот так (один дракон — черный, другой — серый):

Река двойного дракона. Стерев (ради удобства рассмотрения) мелкие притоки, получим древовидную реку двойного дракона:

Двойного дракона можно разбить на его уменьшенные подобия

Шкура двойного дракона. Шкура представляет собой кривую Коха со следующим генератором:

Размеры длинного и короткого отрезков составляют соответственно  и . Следовательно, генерирующая размерность функция имеет вид , а величина  удовлетворяет .

Другие драконы. (См. [95].) Возьмем некоторую бесконечную последовательность  где каждый  может быть либо 0, либо 1, и воспользуемся значением  для определения положения генератора при начальном отрезке на -м этапе построения: если , то первый генератор расположен справа, если же , то первый генератор расположен слева. Каждая такая последовательность породит нового дракона.

Рис. 104 и 105. ПРОХОЖДЕНИЯ СНЕЖИНОК: НОВЫЕ КРИВЫЕ И ДЕРЕВЬЯ ПЕАНО (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК )

На этих иллюстрациях представлено семейство кривых Пеано моего собственноручного изготовления. Они заполняют оригинальную снежинку Коха (см. рис. 74); тем самым оказываются сведены нос к носу два главных чудовища начала века.

Более важное их достоинство заключается в том, что одного взгляда на них достаточно для подтверждения справедливости одного из основных положений настоящего эссе: кривые Пеано ни в коем случае не являются математическими чудовищами, не допускающими никакой конкретной интерпретации. При отсутствии самокасаний кривые Пеано дают ясно видимую и легко интерпретируемую картину скопления сопряженных деревьев. Эти деревья представляют собой хорошие модели первого порядка для рек, водоразделов, настоящих деревьев и кровеносной системы человека.

Ко всему прочему, мы получаем здесь и замечательный побочный продукт: способ разбиения снежинки на меньшие неравные снежинки.

Семизвенный генератор. Инициатор остается неизменным [0,1], а генератор и второй этап построения выглядят следующим образом:

Чтобы быть более точными, обозначим изображенный выше генератор буквой  и назовем его прямым. Определим зеркальное отражение генератора  относительно прямой  как обратный генератор . На любом этапе построения прохождения снежинки можно использовать как -, так и -генераторы, на выбор. То есть каждая бесконечная последовательность символов  и  даст в результате новую кривую, заполняющую снежинку.

Сглаженные терагоны. Ломаные линии выглядят несколько грубовато, но вот если представить каждый отрезок в виде дуги в одну шестую окружности, то заполняющие снежинку терагоны будут выглядеть изотропными и вообще гораздо более «естественными».

Рис. 74. Давным-давно, еще на рис. 74, мы использовали продвинутый терагон семизвенного прохождения снежинки, сглаженного и закрашенного, для заполнения озера волнующейся водой. Теперь, когда мы снова рассматриваем эту картину, она ассоциируется у нас с жидкостью, текущей вдоль фрактальной границы, причем хорошо различимы два приблизительно параллельных потока, движущиеся с различными скоростями.

Тринадцатизвенный генератор. Изменим предыдущий генератор, состоящий из семи отрезков, заменив его пятое звено на уменьшенную копию всего генератора. Эта копия также может иметь - и - варианты. В последнем случае получим следующие генератор и второй этап построения:

Рис. 104. Этот продвинутый терагон, изображенный в виде границы между двумя причудливо переплетенным областями, лучше всяких слов объясняет значение термина «заполнение плоскости».

Рис. 105. Сгладим построенный выше 13-звенный генератор. Сгладим также и снежинку Коха. Первые этапы получаемого в результате построения приведены на рис. 105.

Размерности рек. Каждая отдельная река в оригинальной кривой Пеано имеет конечную длину и, как следствие, размерность 1. В данном случае размерность отдельных рек равна . Для достижения размерности 2, все реки нужно рассматривать в совокупности.

Рис. 106 и 107. КРИВАЯ ПЕАНО-ГОСПЕРА. ЕЕ ДЕРЕВЬЯ И АНАЛОГИЧНЫЕ ДЕРЕВЬЯ КОХА (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК )

К рис. 75. На этом рисунке не получившие в свое время объяснения тонкие ломаные линии представляют собой начальные этапы построения (с 1-го по 4-й) кривой Пеано в интерпретации Госпера (см. [163]). Это — первая кривая Пеано без самопересечений, полученная только методом Коха, без дальнейшей доработки.

Инициатор — отрезок [0, 1]. Генератор —

Если развернуть генератор против часовой стрелки так, чтобы его первое звено заняло горизонтальное положение, то становится видно, что он является частью треугольной решетки, занимая на ней 7 из 3х7 звеньев. Благодаря этой особенности треугольные решетки приобретают свойство, аналогичное описанному на с. 101 свойству квадратных решеток.

Теперь мы можем убедиться в том, что данная кривая Пеано действительно заполняет фигуру, ограниченную кривой Коха на рис. 75. Линия переменной толщины внутри кривой Коха на рис. 75 представляет собой результат пятого этапа настоящего построения.

Рис. 106, слева. Четвертый терагон кривой Госпера, перерисованный в виде границы между черной и белой областями.

Рис. 106, справа. Деревья рек и водоразделов. Изображены реки и водоразделы, проходящие по средним линиям черных и белых «пальцев» кривой, показанной на этом же рисунке слева.

Рис. 107, вверху. Мы взяли древовидную структуру рек и водоразделов, показанную на рис. 106 справа, и привели толщину линий в соответствие с их относительной значимостью в схеме Хортона-Штралера (см. [297]). В настоящем примере каждой кривой (и рекам, и водоразделам) назначается ширина, пропорциональная ее длине по прямой. Реки даны черным, водоразделы — серым.

Размерности. Каждая кривая Пеано определяет размерность  собственной границы. На рис. 95 и 98 указанная граница представляет собой просто квадрат. На последующих рисунках появляются драконова шкура и кривая-снежинка. Здесь же мы имеем дело с фрактальной кривой, размерность которой  и которая состоит отчасти из рек, отчасти из водоразделов. Все другие реки и водоразделы сходятся к кривой с фрактальной размерностью .

Франция. Тому, кто, будучи школьником, часто разглядывал карту бассейнов Луары и Гаронны, наши иллюстрации наверняка о многом напомнят.

Рис. 107, внизу. Дерево рек, построенное непосредственно с помощью каскада Коха. Когда сам генератор имеет древовидную структуру, он порождает при построении дерево. Пусть, например, генератор выглядит вот так:

Получаем еще один способ осушения внутренней области кривой Коха с рис. 75. (Ветви, расположенные у самых «истоков», были обрезаны.)

Рис. 109 и 110. ЗАПОЛНЯЮЩИЕ ПЛОСКОСТЬ ФРАКТАЛЬНЫЕ ДЕРЕВЬЯ, ПЕРЕКОШЕННАЯ СНЕЖИНКА И КВАРТЕТ

Заполняющие плоскость «речные» деревья, получаемые из некоторых кривых Пеано, могут быть получены и с помощью прямого рекурсивного построения. Ключом здесь служит генератор, который сам имеет древовидную форму. Простейший и скучнейший пример: генератор составлен из четырех отрезков, образующих фигуру, похожую на знак «+». В результате построения получим речное дерево кривой Пеано- Чезаро (см. рис. 99).

Перекошенная снежинка. Более интересного результата можно достичь, взяв в качестве инициатора отрезок [0, 1], а в качестве генератора — следующую фигуру:

Для начала обратим внимание на то, что отдельные реки порождаются генератором, который смещает среднюю точку отрезка (таким, например, как на рис. 71). Следовательно, всякая асимптотическая река имеет размерность . Это значение хорошо знакомо нам еще по снежинке Коха, однако кривая, которой мы намерены заняться теперь, — не снежинка, поскольку размещение генератора на прямолинейных отрезках следует иному правилу.

Если мы хотим, чтобы осталось место для рек, необходимо, чтобы положение генератора с каждым отрезком менялось с правого на левое и наоборот. Таким образом симметрия снежинки искажается, а новая область для заполнения реками заслуживает себе имя — перекошенная снежинка.

Вернемся к дереву рек. Его терагоны не перекрывают сами себя, но самокасаний здесь очень много. Неизбежен — и даже напрашивается — асимптотический вариант этой особенности, поскольку он вполне верно отражает тот факт, что иногда несколько рек начинаются в одной точке. Как мы увидим чуть позже, речные терагоны могут и вовсе обходиться без самокасаний. Рассматриваемый же речной терагон — как раз благодаря самокасаниям — представляет собой ({- неразборчиво заштрихованный обрывок гексагональной диаграммной бумаги в форме близкой фрактальной кривой.

Рис. 110, вверху. Речное дерево станет более явным, если стереть все участки реки, соприкасающиеся с истоком, и изобразить главную реку более жирной линией. Площадь бассейна такой реки составляет .

Прохождение перекошенной снежинки. Построим кривую Пеано, инициатор которой имеет форму равностороннего треугольника, а генератор представляет собой ломаную линию, звенья которой равны и расположены под углом в 60° друг к другу. Это — крайний случай при  из семейства генераторов, использованных при построении кривых на рис. 75 и 76, причем он значительно отличается от остальных случаев этого семейства. Подробнее см. в [95].

Можно легко убедиться, что дерево рек этой кривой Пеано совпадает с деревом, которое мы только что получили с помощью прямого построения. Длина стороны инициатора равна 1, а площадь, заполняемая соответствующей кривой Пеано, составляет  (очень неэффективно!).

Квартет. Теперь рассмотрим другую кривую Коха вместе с тремя кривыми, заполняющими ее: одной кривой Пеано и двумя деревьями. Эти придуманные мною фигуры иллюстрируют еще одну весьма интересную тему.

Инициатором снова будет отрезок [0, 1], а генератор выглядит следующим образом:

Граница заполняемой области стремится в пределе к кривой Коха с размерностью . Продвинутые терагоны границы и кривой Пеано составляют центр рис. 79; я назвал эту фигуру квартетом. Каждый «игрок», равно как и стол между ними, способен к самоподобному разбиению плоскости.

Внутренняя область квартета заполняется, конечно же, и его собственным деревом рек. Однако если воспользоваться каким-либо из следующих генераторов, можно получить совершенно другие варианты заполнения:

Терагоны, построенные с использованием левого генератора, демонстрируют самокасания (как и кривые в первом примере данного пояснения). Заполняемая площадь составляет 1/2. Правый генератор позволяет терагонам избежать самокасаний, и заполняемая площадь увеличивается до 1. На рис. 110 (внизу) показан один из продвинутых терагонов такой кривой.

 

Categories

1
Оглавление
email@scask.ru