Главная > Фейнмановские лекции по физике: Т.4 Кинетика. Теплота. Звук
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2. Средняя длина свободного пробега

Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно определить, далеко ли успеет уйти частица между столкновениями. Если мы знаем, что среднее время между столкновениями равно , а средняя скорость молекул равна , то очевидно, что среднее расстояние между столкновениями, которое мы обозначим буквой , равно произведению  и . Это расстояние между столкновениями обычно называют длиной свободного пробега:

Длина свободного пробега .              (43.9)

В этой главе мы не будем уточнять, какого рода среднее мы имеем в виду в каждом случае. Существующие разные средние - среднее, корень из среднего квадрата и т. д. - приблизительно равны и отличаются только множителями, близкими к единице. Поскольку для получения правильных множителей необходим подробный анализ, нам нет смысла очень уж стараться уточнять, какое именно среднее используется в том или ином случае. Мы хотим еще предупредить читателей, что используемые для обозначения физических величин алгебраические символы (например,  для длины свободного пробега) не являются общепринятыми просто потому, что об этом никто еще специально не договаривался.

Вероятность того, что молекула испытает столкновение, пройдя расстояние , равна , как вероятность столкновения за короткий промежуток времени  равна . Призвав на помощь те же аргументы, что и раньше, читатель сможет показать, что вероятность того, что молекула пройдет по крайней мере расстояние , прежде чем испытает следующее столкновение, равна .

Среднее расстояние, которое молекула проходит между столкновениями (длина свободного пробега ), зависит от количества молекул, ее окружающих, и от того, какого «размера» эти молекулы, т. е. от того, насколько уязвимую мишень представляют они собой. «Размеры» мишени при столкновениях обычно описывают при помощи «эффективного сечения столкновений»; эта же идея используется и в ядерной физике или в задачах о рассеянии света.

Рассмотрим движущуюся частицу, которая проходит расстояние  внутри газа, содержащего  рассеивателей (молекул) в единичном объеме (фиг. 43.1). На каждой площадке единичной площади, перпендикулярной к направлению движения выбранной нами частицы, имеется  молекул. Если каждая может быть представлена эффективной площадью столкновения, или, как обычно говорят, «эффективным сечением столкновения» , то полная площадь, покрываемая рассеивателями, равна .

87.gif

Фиг. 43.1. Эффективное сечение столкновения.

Под «эффективным сечением столкновения» понимается площадь, в которую должен попасть центр частицы, если она должна столкнуться с заданной молекулой. Если молекулы выглядят как маленькие шарики (классическая картина), то следует ожидать, что , где  и  - радиусы двух сталкивающихся молекул. Вероятность того, что наша частица столкнется с какой-нибудь молекулой, равна отношению площади, покрываемой рассеивающими молекулами, к полной площади, принятой нами за единицу. Таким образом, вероятность столкновения на пути  равна :

Вероятность столкновения на пути .              (43.10)

Мы уже отметили раньше, что вероятность столкновения на пути  может быть записана в терминах длины свободного пробега  как . Сравнивая это с (43.10), можно связать длину свободного пробега с эффективным сечением столкновения:

.                    (43.11)

Это равенство легче запомнить, если записать его так:

.                   (43.12)

Эта формула говорит, что если частица проходит путь  внутрь рассеивателя, в котором молекулы могут как раз покрыть всю площадь, то в среднем происходит одно столкновение. В цилиндре высотой , поставленном на основание единичной площади, содержится  рассеивателей; если каждый из них занимает площадь , то полная площадь, покрытая ими, равна , а это как раз единичная площадь. Конечно, молекулы не покрывают всей площади целиком, потому что часть молекул прячется за соседние молекулы. Поэтому некоторые молекулы пройдут между столкновениями большее, чем , расстояние. Ведь это только в среднем молекулам между столкновениями дается ровно столько времени, чтобы они смогли пройти расстояние . Измеряя длину свободного пробега , можно определить эффективное сечение рассеяния  и сравнить этот результат с расчетами, основанными на детальной теории строения атомов. Но это уже совсем другая тема! А пока вернемся к проблеме неравновесных состояний.

 

1
Оглавление
email@scask.ru