Главная > Фейнмановские лекции по физике: Т.4 Кинетика. Теплота. Звук
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 5. Молекулярная диффузия

Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, - к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ - «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси . Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных , и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени , равно числу молекул, находящихся к началу интервала  внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии . (Заметим, что здесь  - настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные -направления), равно , где  - число особых молекул в единичном объеме слева от площадки (с точностью до множителя , но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно , где  - плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой , под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

,             (43.21)

или

.                      (43.22)

А что понимать под  и ? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом,  - это плотность молекул на расстоянии длины свободного пробега  слева от нашей воображаемой площадки, а  - плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции ,  и , которую мы обозначим . Под  нужно понимать плотность особых молекул в маленьком объеме вокруг точки . Тогда разность  можно представить в виде

.                       (43.23)

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

.             (43.24)

Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали , когда нужно было ставить , а разместив объемы, содержащие молекулы  и , на концах перпендикуляров к площадке, взяли перпендикуляры длиной . Между тем для тех молекул, которые движутся не перпендикулярно к поверхности,  соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/3. Итак, более правильный ответ выглядит следующим образом:

.                       (43.25)

Аналогичные уравнения можно написать для токов вдоль - и -направлений.

С помощью макроскопических наблюдений можно измерить ток  и градиент плотности . Их отношение, найденное экспериментально, называется «коэффициентом диффузии» . Это значит, что

.             (43.26)

Мы смогли показать, что ожидаемое значение коэффициента  для газа равно

.                    (43.27)

Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега .

Если в уравнение (43.25) подставить  и , то получится

.               (43.28)

Но  зависит только от температуры. Мы еще помним, что

,                       (43.29)

так что

.                    (43.30)

Таким образом, , коэффициент диффузии, равен произведению  на , коэффициент подвижности:

.                   (43.31)

Оказывается, что (43.31) - это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, ненужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси  силовое поле так, что на каждую особую молекулу будет действовать сила . По определению подвижности  скорость дрейфа дается соотношением

.                  (43.32)

Используя обычные аргументы, можно найти ток дрейфа (общее число молекул, пересекающих единичную площадку за единицу времени):

,               (43.33)

или

.              (43.34)

А теперь можно так распорядиться силой , что ток дрейфа, вызываемый силой скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем , или

.                     (43.35)

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

.             (43.36)

Теперь уже легко соображать дальше! Ведь мы добились равновесия и можем теперь применять наши равновесные законы статистической механики. По этим законам вероятность найти молекулу около точки  пропорциональна , где  - потенциальная энергия. Если говорить о плотности молекул , то это значит:

.                        (43.37)

Дифференцируя (43.37) по , получаем

,                  (43.38)

или

.                    (43.39)

В нашем случае сила  направлена вдоль оси  и потенциальная энергия  равна , а . Уравнение (43.39) принимает вид

.               (43.40)

[Это в точности уравнение (40.2), из которого мы и вывели ; круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

 

1
Оглавление
email@scask.ru