Главная > Фейнмановские лекции по физике: Т.4 Кинетика. Теплота. Звук
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 5. Удельные теплоемкости газов

Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже говорили, что если  - внутренняя энергия  молекул, то формула  иногда и для некоторых газов может оказаться правильной. Мы знаем, что для одноатомного газа правая часть равна 2/3 кинетической энергии движения центров масс атомов. В случае одноатомного газа кинетическая энергия равна внутренней энергии, поэтому .

Но предположим, что мы столкнулись с более сложной молекулой, которая может вращаться и колебаться, и предположим (в классической механике это так), что энергии внутренних движений также пропорциональны . Поэтому при заданной температуре молекула, кроме кинетической энергии , имеет внутреннюю энергию колебания и вращения. Тогда полная энергия  включает не только кинетическую энергию, но и вращательную энергию и мы получаем другие значения . Наилучший способ измерения  - это измерение удельной теплоемкости, характеризующей изменение энергии при изменении температуры. К этому способу мы еще вернемся, а пока предположим, что нам удалось экспериментально определить  с помощью кривой , соответствующей адиабатическому сжатию.

Попробуем вычислить  для ряда частных случаев. Прежде всего для одноатомных газов полная энергия  есть не что иное, как кинетическая энергия, и в этом случае, как мы уже знаем,  равно 5/3. В качестве примера двухатомных газов рассмотрим кислород, водород, пары иода и т. д. и предположим, что двухатомный газ можно представить как собрание пар атомов, между которыми действуют силы, похожие на те, что изображены на фиг. 40.3. Можно также предположить, и оказывается, что это вполне законно, что при температурах, обычных для диатомных газов, пары атомов стремятся удалиться друг от друга на расстояние  (расстояние минимума потенциальной энергии). Если бы это было не так, и вероятность не очень сильно зависела от удаления от равновесной конфигурации, то мы обнаружили бы, что кислород есть смесь сравнимых количеств  и одиночных атомов кислорода. А мы знаем, что в кислороде присутствует очень мало одиночных атомов кислорода, а это означает, что глубина потенциальной ямы значительно больше , и это как раз мы и предполагали. Но раз атомы, составляющие молекулу, прочно закреплены на расстоянии , то нам понадобится лишь часть потенциальной кривой вблизи минимума, которую в этом случае можно приближенно заменить параболой. Параболический потенциал соответствует гармоническому осциллятору, и, в самом деле, отличной моделью молекулы кислорода могут служить два соединенных пружинкой атома.

Но чему же равна полная энергия молекулы при температуре ? Мы знаем, что кинетическая энергия каждого из атомов равна , так что кинетическая энергия обоих атомов равна . Можно распределить эту энергию иначе: тогда те же самые 3/2 плюс 3/2 будут выглядеть как кинетическая энергия центра масс (3/2), кинетическая энергия вращения (2/2) и кинетическая энергия колебаний (1/2). Известно, что на долю кинетической энергии колебаний приходится 1/2, потому что это одномерное движение, а каждой степени свободы соответствует . Обращаясь к вращениям, мы можем выделить две оси вращения, что соответствует двум независимым движениям. Мы представляем себе атомы в виде точек, которые не могут вращаться вокруг соединяющей их линии. Но на всякий случай запомним о таком предположении, потому что если мы упремся где-то в тупик, то, может быть, здесь обнаружится корень зла. Нас должен интересовать еще и другой вопрос: чему равна потенциальная энергия колебаний, велика ли она? Средняя потенциальная энергия гармонического осциллятора равна средней кинетической энергии, т.е. также . Полная энергия молекулы , или  на атом. Это означает, что  равно 9/7, а не 5/3, т. е. .

Можно сравнить эти числа с действительно измеренными значениями , приведенными в табл. 40.1. Взгляните сначала на гелий; это одноатомный газ, и значение  очень близко к 5/3; отклонение от этого значения, вероятно, есть просто следствие экспериментальных неточностей, хотя при столь низких температурах между атомами могут появиться силы взаимодействия. Криптон и аргон - еще два одноатомных газа - также дают согласующиеся значения в пределах ошибки эксперимента.

Таблица 40.1 ИЗМЕРЕННЫЕ ЗНАЧЕНИЯ  ДЛЯ РАЗЛИЧНЫХ ГАЗОВ

Газ

, °С

Газ

, °С

Не

-180

1,660

HI

100

1,40

Kr

19

1,68

300

1,32

Аr

15

1,668

185

1,30

100

1,404

15

1,310

100

1,399

15

1,22

Перейдем к двухатомным газам. Тут же обнаружится, что значение  для водорода, равное 1,404, не согласуется с теоретическим значением 1,286. Очень близкое значение дает и кислород, 1,399, но с теоретическим это снова не согласуется. Для йодистого водорода  равно просто 1,40. Начинает казаться, что мы нашли общий закон: для двухатомных молекул  равно 1,40. Но нет, поглядите дальше. Для брома мы получаем 1,32, а для иода 1,30. Поскольку 1,30 довольно близко к 1,286, то можно считать, что экспериментальное значение  для иода согласуется с теоретическим, а кислород представляет собой исключение. Это уже неприятно. То, что верно для одной молекулы, неверно для другой, и нам, по-видимому, надо проявить хитроумие, чтобы объяснить это.

Давайте рассмотрим еще более сложные молекулы, состоящие из большого числа частей, например  - этан. Молекула атома состоит из восьми разных атомов, и все они качаются и вращаются в самых разных комбинациях, так что полная величина внутренней энергии должна складываться из огромного числа , по крайней мере  только для одной кинетической энергии, поэтому  должно быть очень близко к нулю, а  почти в точности равно единице. И действительно, значение  для этана меньше, чем в предыдущих случаях, но 1,22 - не так уж мало, во всяком случае, больше , чему должно быть равно , если учесть только кинетическую энергию. Этого вообще нельзя понять!

Ну а дальше совсем плохо, ибо двухатомную молекулу нельзя рассматривать как абсолютно жесткую, даже в пределе. Даже если связь между атомами так сильна, что они не могут и пошевелиться, все равно нужно считать, что они колеблются. Колебательная энергия всегда равна , поскольку она не зависит от силы связи. Но если представить себе двухатомную молекулу абсолютно жесткой, остановить колебания и выбросить эту степень свободы, то мы получим  и  для двухатомных газов. Казалось бы, это подходит и для , и для . Но вопрос по-прежнему остается открытым, потому что  и для кислорода, и для водорода зависит от температуры! На фиг. 40.6 показаны результаты нескольких измерений. Для  значение  изменяется от 1,6 при -185°С до 1,3 при 2000°С. В случае водорода изменения  еще больше, но и в случае кислорода  явно стремится возрасти при падении температуры.

40.gif

Фиг. 40.6. Экспериментальные значения  как функция температура для водорода и кислорода.

Классическая теория предсказывает не зависящее от температуры значение .

 

1
Оглавление
email@scask.ru