Главная > Ядерная физика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Пробег заряженных частиц в веществе.

Под пробегом частицы в каком-нибудь веществе понимается толщина слоя этого вещества, которую может пройти частица с энергией до полной остановки, если направление ее движения было перпендикулярно поверхности слоя.

По существу эта величина более или менее определенна лишь для тяжелых частиц, путь которых практически является прямой линией; и по этой причине разброс в величине пробега для частиц одинаковой энергии невелик. У легких частиц, например у электронов малых энергий, вероятность рассеяния велика «и поэтому понятие пути и понятие пробега для них не совпадают. По измеренному пробегу частицы в среде можно определять ее энергию, или, зная зависимость величины пробега от энергии, определять массу частицы.

Для данной среды и для частицы с зарядом величина удельных потерь является функцией только скорости, а следовательно, у частицы с известной массой — функцией только кинетической энергии

Зная вид функции можно найти и полный пробег частицы

Для нерелятивистских энергий можно записать

Подставив (72) и (73) в (71) и произведя интегрирование, получим

Из этого соотношения следует, что:

1) при равных скоростях пробеги заряженных частиц в веществе пропорциональны массам этих частиц и обратно пропорциональны квадратам зарядов:

2) при равных энергиях частиц их пробеги обратно пропорциональны массам:

Пробеги заряженных частиц часто выражают в

и пользуются выражением удельных потерь в форме:

Измерять пробеги в удобно, потому что удельные ионизационные потери в легких веществах, рассчитанные на одинаковы в разных средах. Действительно, мы видели, что и, следовательно,

Однако число электронов, содержащихся в вещества, равно

где число Авагадро, А — атомный вес вещества.

Так как у легких элементов то в слое любого легкого вещества толщиной будет содержаться примерно электронов:

а это означает, что

Для однозарядных релятивистских частиц

и слабо убывает с ростом вещества.

На основании формулы для пробега чистиц (74), примененной к однородному пучку, который проходит слой поглотителя без

рассеяния, можно построить зависимость числа частиц, прошедших через поглотитель, от толщины слоя. Эта кривая изображена на рис. 54. Для монохроматического пучка -частиц она удовлетворительно совпадает с экспериментом (пунктир).

Рис. 54. Зависимость числа моноэнергетических частиц, прошедших поглотитель, от его толщины: а — -частиц; электронов

Конечный участок экспериментальной кривой не вертикален, а имеет небольшой наклон вследствие статистического характера процесса потери энергии. Частицы теряют свою энергию в очень большом, но конечном числе отдельных актов. Флуктуации подвержено как число таких актов на единицу длины, так и потери энергии в каждом отдельном акте. В соответствии с этим и пробеги -частиц испытывают статистические флуктуации. Однако величина разброса пробегов незначительна и составляет приблизительно 1% от полного пробега для -частиц с энергией (масштаб на рис. 54, а не соблюден).

Поэтому по пробегу -частицы можно с хорошей степенью точности определять их энергию. Электроны же испытывают в веществе многократное рассеяние, направление их движения часто меняется и только в наиболее благоприятных случаях электроны проходят максимальное расстояние в поглотителе в направлении, перпендикулярном к его поверхности. Кривая поглощения коллимированного пучка моноэнергетических электронов имеет вид, отличный от аналогичной кривой для -частиц (рис. 54,б). Поэтому энергию электронов нельзя определять по пробегу, а надо измерять полную ионизацию, произведенную ими в веществе.

1
Оглавление
email@scask.ru