Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ВВЕДЕНИЕОсновные этапы развития ядерной физики.Ядерная физика изучает структуру атомных ядер, свойства ядернъга; сил, законы изменения и превращения ядер при распаде и ядерных реакциях, взаимодействие ядерного излучения с веществом и элементарные частицы. Трудно указать другую область естествознания, столь же быстро развившуюся и получившую столь широкое применение в медицине, биологии, технике и энергетике, как ядерная физика. Многие ее новые открытия немедленно находят практическое приложение. Изучение элементарных частиц непрерывно меняет и обогащает наши представления о свойствах материи. Все это определяет исключительно быстрое развитие ядерной физики. Ее предыстория начинается в 1896 г., когда французский ученый Беккерель открыл, что соединения урана, независимо от их химического строения, самопроизвольно испускают лучи высокой проникающей способности. Тот же эффект наблюдался у открытого вскоре супругами Кюри элемента — радия. Исследуя характер отклонения этих лучей в магнитном поле, Резерфорд показал, что они состоят из трех различных компонент: Изучая рассеяние На основании этих опытов в 1911 г. Резерфорд предложил ядерную модель атома (в противовес существовавшей в то время модели Томсона, согласно которой атом рассматривался как положительно заряженный сплошной шар со взвешенными внутри него электронами). По этой ядерной модели атом состоит из тяжелого положительно заряженного ядра и в тысячи раз более легкой оболочки, образованной электронами. Электроны вращаются вокруг ядра и удерживаются вблизи него электрическими силами на расстояниях, которыми и определяется размер всего атома. Так как атомы электрически нейтральны, то атомный номер Однако с точки зрения классической физики нельзя было объяснить существование стабильных атомов такой структуры, так как в соответствии с законами электродинамики всякий электрон, движущийся по окружности вокруг ядра, должен терять свою энергию на излучение, постепенно приближаться к ядру и в конце концов упасть на него. При этом должна непрерывно меняться частота обращения электрона вокруг ядра и, следовательно, частота испускаемого атомом излучения. В то же время было известно, что атомные спектры имеют строго определенный дискретный и стационарный характер. Для устранения этих противоречий в 1913 г.
где Переход же электрона с одной стационарной орбиты на другую (по Бору) должен сопровождаться поглощением или испусканием порции электромагнитной энергии в виде кванта света частоты
где Эти два условия были введены в виде постулатов и на их основании были объяснены многие экспериментальные результаты. Однако в самой основе теории Бора была заложена непоследовательность. С одной стороны, он предполагал, что классические принципы механики и электродинамики в общем правильны и электрон обладает обычными свойствами заряженной корпускулы. С другой стороны, утверждалось, что для электрона в атоме существуют некоторые исключения, необъяснимо противоречащие классическим представлениям. Эта трудность была преодолена только после создания в 1926 г. Гейзенбергом и Шредннгером последовательной теории — квантовой механики, основывающейся на более общих законах материи, которые в макромире сводятся к законам классической физики, но в микромире соответствуют совершенно новым свойствам частиц. В частности, соответственно новым, волновым свойствам электрона, как показывает квантовая механика, не существует таких состояний частицы, в которых она обладала бы одновременно точно определенным положением и скоростью. В таких условиях, когда отличие законов квантовой механики от законов классической физики становится существенным, например, для электрона в атоме, состояние его уже нельзя представлять как движение по определенной траектории — физические свойства частицы делают такое описание неадекватным. Вместо этого состояние следует описывать так называемой волновой функцией. Для каждой конкретной системы она может быть найдена как решение фундаментального уравнения квантовой механики — волнового уравнения Шредингера. Оказывается, например, для электрона в атоме такое физически осмысленное решение существует только для выделенной последовательности значений энергии и момента количества движения. Эти «разрешенные», или «собственные», состояния и определяющие их «собственные значения» энергии и момента количества движения как раз и соответствуют состояниям, введенным Н. Бором. Однако при этом представление об орбитах электронов становится недействительным и отпадает. При данном состоянии электрона он может быть обнаружен не на некоторых орбитах, а с разной вероятностью во всем объеме атома. Вероятность обнаружения в данной точке определяется квадратом модуля волновой функции в данной точке. Квантовая механика не только подтвердила ряд результатов теории Бора, но и сумела объяснить другие экспериментальные данные. В 1919 г. Резерфорд наблюдал расщепление ядер различных веществ при бомбардировке их После открытия протонов физикам представлялось, что ядро построено из А протонов и положительно, следовательно, в единицах электронного заряда (взятого по абсолютной величине) заряд ядра равен Но представление о том, что электроны входят в состав ядра, противоречило многим экспериментальным фактам. В 1930 г. Боте и Беккер, подвергая бериллий воздействию Ирен Жолио-Кюри и Фредерик Жолио нашли, что если поместить на пути излучения парафин, то из парафина вылетают протоны большой энергии. Такой вид взаимодействия у-излучения с веществом не был известен. Чтобы он мог существовать надо было бы приписать у-лучам энергию, значительно большую, чем они могли иметь при подобных реакциях. Только в 1932 г. Чадвик доказал существование электрически нейтральной частицы с массой, почти такой же, как у протона. Эта частица была названа нейтроном и обозначается символом Сразу же после этого открытия независимо Гейзенбергом и Иваненко была высказана естественная гипотеза о том, что ядро построено из протонов и нейтронов, причем полное их число определяет массу ядра А, число одних протонов — заряд ядра Так как нейтрон не имеет заряда, эти силы не могут быть электрическими. Стало ясно, что кроме известных ранее кулонов-ских и гравитационных сил, должны существовать новые — ядерные силы. Возник вопрос о природе этих сил. С открытием нейтрона по существу начался новый этап в развитии науки о ядре. В конце 1932 г. в космических лучах Андерсоном и Милли-кеном был открыт позитрон — частица с массой электрона, но положительно заряженная По мере изучения Было показано, что спектр излучаемых электронов имеет непрерывный характер, а их средняя энергия значительно меньше энергии, теряемой ядром при распаде. Выход был найден Паули, предложившим гипотезу о существовании еще одной нейтральной частицы с высокой проникающей способностью — нейтрино (символ и вошла в теорию, но существование нейтрино в свободном состоянии было обнаружено на опыте более чем через двадцать лет. Для того чтобы на основе гипотезы о нейтрино построить последовательную теорию Это взаимодействие согласно его теории обусловливало р-распад, т. е. распад нейтрона на протон, электрон и нейтрино
В 1934 г. советский физик И. В 1935 г. японский физик Юкава, развивая эти идеи, показал, что ядерные силы могут иметь в своей основе обмен какими-то другими частицами — квантами поля ядерных сил. Принтом для объяснения малого радиуса ядерных сил нужно было предположить, что они должны иметь массу порядка 200—300 электронных масс. В 1938 г. подобные частицы были открыты в космических лучах и получили название Только в 1947 г. Пауэллом в космических лучах были обнаружены ядерно активные частицы — Работы по изучению взаимодействий между нуклонами и ядрами развивались особенно интенсивно после открытия методов искусственного ускорения частиц, В 1932 г. Кокрофт и Уолтон построили установку, в которой получили пучок быстрых протонов. Бомбардируя такими ускоренными протонами мишени из различного вещества можно было наблюдать процессы расщепления ядер. Дальнейшее развитие ускорительной техники дало возможность получать также быстрые электроны дейтоны, С открытием в 1944 г. В. И. Векслером (СССР) и в 1945 г. Макмиллаиом (США) принципа автофазировки была начата разработка новых циклических ускорителей. В Советском Союзе с 1958 г. работает ускоритель с энергией частиц 10 Гэв. В 1960 г. в США получены на ускорителе частицы с энергией порядка 30 Гэв. Недавно (1968 г.) в СССР введен в строй новый ускоритель в Серпухове, в котором протоны ускоряются до энергий В различных странах запланировано строительство еще более мощных ускорителей. Европейским центром научных исследований в Швейцарии (CERN) намечено строительство ускорителя на 300 Гэв. В США сооружается кольцевой ускоритель на 200 Гэв с возможностью в дальнейшем удвоения энергии. В СССР успешно прошла испытание модель ускорителя на 1000 Гэв. Для представления о размерах этой уникальной установки достаточно сказать, что периметр ускорительной камеры будет равен 20 км. В 1939 г. Ган и Штрассмаи, облучая уран нейтронами, наблюдали образование нескольких более легких элементов. Мейтнер и Фриш предложили правильную интерпретацию результатов, полученных Ганом и Штрассманом и показали, что тяжелое ядро под действием нейтронов может разделиться на две примерно равные части. В дальнейшем было показано, что процесс деления сопровождается испусканием вторичных нейтронов и освобождением большого количества энергии. Так как отношение среднего числа вторичных нейтронов к числу первичных превышает единицу, появилась возможность реализовать цепную реакцию, т. е. повторять процесс деления на новых ядрах урана с экспоненциальным нарастанием потока нейтронов. Первый ядерный реактор, в котором получалась энергия за счет деления ядер, был построен Ферми в США в 1942 г. Темпы развития этой отрасли науки таковы, что уже через 12 лет (в 1954 г.) в СССР была запущена первая в мире промышленная атомная электростанция. За последние 25 лет развитие наших представлений о структуре ядер, об элементарных частицах, о свойствах ядерных сил происходило весьма быстро. Эксперименты были направлены на наблюдение ядерных процессов при все больших энергиях путем использования мощных ускорителей и усовершенствования методов изучения космических лучей, в составе которых имеются частицы огромной энергии вплоть до Мир элементарных частиц непрерывно расширял свои границы: были открыты гипероны — частицы с массой, большей массы протона; было обнаружено существование двух различных типов нейтрино: нейтрино электронных и нейтрино мюонных. Огромное значение для науки имело открытие несохранения четности в слабых взаимодействиях и спиральности нейтрино. В настоящее время обнаруживаются все новые и новые частицы, относящиеся к классу так называемых резонансов, со временем жизни порядка В последние годы произошел качественный сдвиг в понимании того, что такое элементарная частица. Опыты развеяли старое представление об элементарной частице, как о чем-то вечном, неизменном и неразделимом. Оказалось, что все элементарные частицы могут рождаться и умирать, превращаясь в другие элементарные частицы. Частицы могут превращаться в излучение, и, наоборот, световые кванты могут порождать частицы. Оказалось, что элементарные частицы сами обладают сложной структурой. Таким образом, родилась физика элементарных частиц. В настоящее время их известно уже более 200. Пока еще не существует строгой единой теории элементарных частиц, хотя накоплено много экспериментальных фактов. Каждый день приносит новые сведения и расширяет наши познания о природе явлений в мире атомных ядер и элементарных частиц.
|
1 |
Оглавление
|