Главная > Руководство к решению задач по теоретической механике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 4. ТЕОРЕМА О КИНЕТИЧЕСКОЙ ЭНЕРГИИ МАТЕРИАЛЬНОЙ ТОЧКИ

Кинетическая энергия материальной точки выражается половиной произведения массы этой точки на квадрат ее скорости.

Теорему о кинетической энергии материальной точки можно выразить в трех видах:

(187)

т. е. дифференциал кинетической энергии материальной точки равен элементарной работе силы, действующей на эту точку;

т. е. производная по времени от кинетической энергии материальной точки равна мощности силы, действующей на эту точку:

т. е. изменение кинетической энергии материальной точки на конечном пути равно работе силы, действующей на точку на том же пути.

Таблица 17. Классификация задач

Если на точку действует несколько сил, то в правые частя уравнений входит работа или мощность равнодействующей этих сил, которая равна сумме работ или мощностей всех составляющих сил.

В случае прямолинейного движения точки, направляя ось по прямой, по которой движется точка, имеем:

и

где , так как в этом случае равнодействующая всех приложенных к точке сил направлена по оси х.

Применяя теорему о кинетической энергии в случае несвободного движения материальной точки, нужно иметь в виду следующее: если на точку наложена совершенная стационарная связь (точка движется по абсолютно гладкой неподвижной поверхности или линии), то реакция связи в уравнения не входит, ибо эта реакция направлена по нормали к траектории точки и, следовательно, ее работа равна нулю. Если же приходится учитывать трение, то в уравнение кинетической энергии войдет работа или мощность силы трения.

Задачи, относящиеся к этому параграфу, можно разделить на два основных типа.

I. Задачи на применение теоремы о кинетической энергии при прямолинейном движении точки.

II. Задачи на применение теоремы о кинетической энергии при криволинейном движении точки.

Кроме того, задачи, относящиеся к типу I, можно разделить на три группы:

1) сила, действующая на точку (или равнодействующая нескольких сил), постоянна, т. е. , где X — проекция силы (или равнодействующей) на ось , направленную по прямолинейной траектории точки;

2) сила, действующая на точку (или равнодействующая), является функцией расстояния (абсциссы этой точки), т. е.

3) сила, действующая на точку (или равнодействующая), есть функция скорости этой точки, т. е.

Задачи, относящиеся к типу II, можно разделить на три группы:

1) сила, действующая на точку (или равнодействующая), постоянна и по модулю и по направлению (например, сила веса);

2) сила, действующая на точку (или равнодействующая), есть функция положения этой точки (функция координат точки);

3) движение точки при наличии сил сопротивления.

1
Оглавление
email@scask.ru