Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
РЕГУЛЯЦИЯ КОЛИЧЕСТВА ФЕРМЕНТА ПУТЕМ РЕГУЛЯЦИИ СКОРОСТИ ЕГО СИНТЕЗА И РАСПАДАОбщие принципыАбсолютное количество фермента в клетке определяется скоростями его синтеза
Рис. 10.2. Количество фермента определяется балансом процессов его синтеза и распада. количество фермента уменьшается в результате либо уменьшения Синтез ферментов детерминируется информацией, содержащейся в ДНКПервичная структура фермента, как и любого другого белка, определяется той информацией, которая записана в информационной (матричной) РНК В результате мутаций нуклеотидная последовательность ДНК может измениться, и будут синтезироваться белки с измененной первичной структурой. Если новая аминокислота сильно отличается по своим свойствам от исходной, изменения могут охватить высокие уровни структурной организации и может произойти частичная или полная утрата каталитической активности (впрочем, в редких случаях наблюдается, напротив, ее повышение). Мутации в различных генетических локусах могут приводить к нарушению синтеза самых разных ферментов и тем самым к развитию многих генетических заболеваний. Индукция ферментовКлетки могут синтезировать специфические ферменты в ответ на присутствие специфических низкомолекулярных индукторов. Индукцию ферментов можно проиллюстрировать на следующем примере. Клетки Escherichia coli, выращенные на глюкозе, не способны сбраживать лактозу из-за отсутствия фермента р-галактозидазы, гидролизующей лактозу, которая распадается на глюкозу и галактозу. Если в питательную среду добавить лактозу или некоторые другие Р-галактозиды, то индуцируется синтез р-галактозидазы, и культура клеток обретает способность сбраживать лактозу. Индуктор (лактоза) является субстратом индуцируемого белка ф-галактозидазы). Многие индукторы одновременно служат субстратами ферментов, которые они индуцируют, однако в роли индукторов могут выступать и соединения, структурно сходные с субстратом, но сами не являющиеся субстратами. И наоборот, соединение может быть субстратом, но не являться индуктором. Нередко какое-либо соединение индуцирует сразу несколько ферментов данного катаболического пути. В этих случаях говорят, что структурные гены, кодирующие группу катаболических ферментов, составляют оперон, и все ферменты, кодируемые генами оперона, индуцируются единственным индуктором (координированная индукция). Способность регулировать синтез ферментов с помощью того или иного питательного вещества позволяет бактерии использовать это питательное вещество с максимальным для себя преимуществом; в то же время «ненужные» ферменты бактерия не синтезирует. Ферменты, концентрация которых в клетке не зависит от добавления индукторов, называются конститутивными. Данный фермент может быть конститутивным для одного штамма, индуцируемым для другого и вообще отсутствовать в третьем. Обычно клетки содержат небольшое, но измеримое количество соответствующего фермента даже в отсутствие индуктора. Это — базовый уровень. Величина отклика данного организма на введение индуктора определяется генетически (см. гл. 41). При индукции различных штаммов может наблюдаться повышение содержания фермента, варьирующее от двукратного до тысячекратного. Таким образом, содержащаяся в клетке наследственная генетическая информация определяет и характер, и величину реакции на введение индуктора. Следовательно, понятия «конститутивный» и «индуцируемый» относительны: они характеризуют лишь крайние точки всего спектра возможных реакций. Индукция ферментов наблюдается и у эукариот. Примерами индуцируемых ферментов у млекопитающих являются триптофанпирролаза, треониндегидраза, тирозин-а-оксоглутарат—грансаминаза, инвертаза, ферменты цикла мочевины, HMG-СоА-редуктаза и цитохром Репрессия и дерепрессия ферментовБактерии, способные синтезировать определенный метаболит, при наличии этого метаболита в среде могут приостановить его синтез в результате репрессии. В этом случае небольшая молекула, например пурин или аминокислота, действуя как корепрессор, блокирует синтез ферментов, участвующих в биосинтезе самого корепрессора. Например, добавление гистидина в среду, на которой растет бактерия Salmonella typhimurium, подавляет (репрессирует) синтез всех ферментов биосинтеза гистидина; добавление в среду лейцина репрессирует синтез первых трех ферментов, которые участвуют исключительно в биосинтезе лейцина. В обоих случаях гены ферментов, ответственных за биосинтез данного метаболита, образуют оперон: добавление в среду конечного продукта биосинтеза, гистидина или лейцина, вызывает координированную репрессию. Координированная репрессия наблюдается не для всех путей биосинтеза. После удаления из среды корепрессора или же при истощении его запасов биосинтез соответствующих ферментов возобновляется. Это явление называют дерепрессиен. Дерепрессия может быть координированной и некоординированной. Приведенные выше примеры иллюстрируют репрессию конечным продуктом по принципу обратной связи, характерную для процессов биосинтеза в бактериях. Сходное явление —катаболитная репрессия — состоит в том, что одно из промежуточных соединений в цепочке катаболических ферментативных реакций репрессирует синтез катаболических ферментов. Оно было впервые обнаружено при изучении культуры Е. coli, растущей на среде, которая содержит в качестве источника углерода не глюкозу, а другое соединение В разветвленных процессах биосинтеза, например при биосинтезе аминокислот с разветвленными боковыми цепями или аминокислот семейства аспартата, ферменты начальных стадий участвуют в биосинтезе нескольких аминокислот (рис. 10.3). Если в среду, на которой растут бактерии, добавить лизин, репрессируется синтез ферментов, участвующих исключительно в биосинтезе лизина
Рис. 10.3. Синтез аминокислот семейства аспартата. Под Если же в среду добавить одновременно и лизин, и треонин, то ферменты В присутствии всех конечных продуктов, образующихся на различных ответвлениях пути биосинтеза, может наблюдаться мультивалентная репрессия. Это происходит только тогда, когда все конечные продукты, синтезируемые данным набором ферментов, присутствуют в избытке. Следовательно, для полной репрессии аспартокиназы Обновление ферментовВ быстро растущих бактериях общая скорость распада белков составляет около 2% в час. Иное положение складывается, когда бактерии находятся в условиях голодания или их переносят на свежую среду, бедную углеродом. В этих условиях распад бактериальных белков идет со скоростью 7—10% в час. Сочетание процессов синтеза и распада ферментов называют обновлением ферментов. Обновление происходит и у бактерий, и у млекопитающих, однако значение распада ферментов как средства регуляции их количества у бактерий недооценивалось. В клетках млекопитающих обновление белков было обнаружено гораздо раньше, чем у бактерий. Указания на этот процесс у человека были получены более ста лет назад на основании наблюдений за людьми, получавшими специальную диету. Однако лишь после классических работ Шёнхеймера, начатых незадолго до второй мировой войны, было твердо установлено, что обновление клеточных белков происходит на протяжении всей жизни. Измеряя скорость включения в данный белок 15 N-меченных аминокислот и скорость утраты метки белком, Шёнхеймер пришел к выводу, что белки в организме человека находятся в состоянии «динамического равновесия»; это представление позднее было распространено на другие компоненты организма, включая липиды и нуклеиновые кислоты. Регуляция синтеза и распада ферментовОсновные этапы синтеза белков достаточно хорошо изучены, чего нельзя сказать о процессах распада ферментов. Распад ферментов происходит в результате их гидролиза протеолитическими ферментами, но о механизме регуляции этой протеолитической активности мало что известно. Установлено только, что процессы регуляции могут быть сопряжены с расходованием АТР. Чувствительность фермента к протеолизу зависит от его конформации. Присутствие или отсутствие субстратов, коферментов, ионов металлов — все это способно влиять на конформацию белка и его чувствительность к протеолизу. Поэтому скорость распада специфических ферментов может зависеть от концентрации в клетке субстратов, коферментов и, возможно, ионов. Эти представления можно хорошо проиллюстрировать на примере аргиназы и триптофаноксигеназы (триптофанпирролазы). Регуляция содержания аргиназы в печени может осуществляться путем изменения либо Содержание ферментов в тканях млекопитающих может изменяться в результате действия различных физиологических и гормональных факторов, а также под влиянием диеты. Известно много примеров такого рода для разных тканей и различных метаболических путей (табл. 10.1), однако наши знания о молекулярном механизме процессов носят фрагментарный характер. Глюкокортикоиды повышают концентрацию тирозин-трансаминазы, увеличивая Превращение проферментов в активные ферментыФерментативная активность может регулироваться путем превращения неактивного профермента в каталитически активную форму. Чтобы перейти в такую форму, профермент должен подвергнуться ограниченному протеолизу, сопровождающемуся конформационными изменениями; при этом происходит либо демаскирование каталитического центра, либо его формирование (см. гл. 8). Синтез в форме каталитически неактивных проферментов является характерным свойством пищеварительных ферментов, а также ферментов системы свертывания крови и системы фибринолиза (см. гл. 55).
|
1 |
Оглавление
|