Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 8. Суммарный эффект влияния ошибок округления.За исключением редких случаев, ошибка округления появляется в каждой арифметической операции. Поэтому при реализации на ЭВМ сложного вычислительного алгорифма на его окончательный результат будет оказывать влияние очень большое число ошибок округления результатов промежуточных вычислений. Общий эффект влияния ошибок обычно учитывается следующим образом. Обозначим через А входные данные задачи, через В — результат их обработки по некоторому точному алгорифму
Предположим, что алгорифм
На множестве входных данных и множестве решений задачи могут быть введены операции сложения и вычитания элементов, умножения элемента на число и т. п. В этом случае
есть ошибка вычисления на ЭВМ элемента В. Введя на множестве решений подходящим образом метрику, можно пытаться оценить величину II, т. е. получить количественную оценку ошибки вычисленного решения задачи. Такой подход к оценке суммарного влияния ошибок округления получил название прямого анализа ошибок. В настоящее время получил широкое распространение и другой подход к оценке влияния, ошибок. Во многих задачах реально вычисленное решение
В этом случае ошибку вычисленного решения характеризует и элемент
то реально вычисленное решение По существу, мы уже встречались с обратным анализом. Исследуя общее влияние ошибок округления на сложение и умножение чисел, на вычисление евклидовой нормы вектора, нам удалось показать, что результат реальных вычислений в этих случаях можно трактовать как точное применение соответствующих алгорифмов к возмущенным входным данным. При этом были получены оценки эквивалентных возмущений. В практических задачах входные данные редко бывают заданы точно. Обычно они получаются из каких-либо измерений либо предварительных расчетов и почти всегда содержат определенные ошибки. Обратный анализ показывает, что влияние ошибок округления при последующих вычислениях равносильно дополнительному внесению ошибок во входные данные. Сравнение величин первоначальных ошибок и эквивалентного возмущения при решении задачи позволяет правильно соизмерять точность входных данных с точностью самих вычислений. Даже в случае математически точного задания входных данных ошибки в них почти неизбежно появляются за счет округления чисел при вводе в ЭВМ. Это минимальные из возможных ошибок. Как будет показано в дальнейшем, для многих численных методов линейной алгебры имеет место весьма примечательный факт. Именно, при правильной реализации эквивалентное возмущение оказывается соизмеримым по величине с ошибками округления входных данных. Однако заметим, что столь высокая устойчивость методов достигается далеко не при всякой реализации и не сразу видно, как следует организовать вычисления, чтобы добиться устойчивости. Мы уже видели это на простом примере вычисления евклидовой нормы вектора. Значительная часть обратного анализа ошибок в линейной алгебре выполняется по типичной схеме, которую можно показать на следующем примере. Пусть
и матрицы
Следовательно, матрица Реальный вычислительный процесс приводит в общем случае к построению такой последовательности:
Здесь
Обозначим
тогда
Сравнивая (8.2), (8.6), заключаем, что реально вычисленная матрица
для В наших исследованиях будет в основном использоваться обратный анализ ошибок, значительно реже — прямой анализ. В отдельных вспомогательных задачах может возникнуть необходимость в использовании обоих методик оценки суммарного влияния ошибок округления. УПРАЖНЕНИЯВыполнить прямой и обратный анализ ошибок в упражнениях предыдущего параграфа. Везде ли может быть осуществлен обратный анализ?
|
1 |
Оглавление
|