Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 2. МАТЕМАТИЧЕСКИЙ АНАЛИЗ§ 7. Анализ как теория степенных рядовНьютон открыл способ решения любых уравнений, причем не только дифференциальных, но и, например, алгебраических. Это открытие он считал самым важным своим достижением и именно его закодировал в письме к Лейбницу 24 октября 1676 года (посланном через Ольденбурга и потому вошедшим в историю под названием «Второе письмо к Ольденбургу» (epistola posterior)), в котором он описал анализ. Анализ — это довольно трудно определяемое понятие. Ньютон понимает под анализом исследование уравнений при помощи бесконечных рядов. Основное открытие Ньютона, иными словами, заключается в том, что все надо раскладывать в бесконечные ряды. Поэтому, когда ему приходилось решать уравнение, будь то дифференциальное уравнение или, скажем, соотношение, определяющее некоторую неизвестную функцию (теперь это называли бы одним из видов теоремы о неявной функции), Ньютон действовал по следующему рецепту. Все функции раскладываются в степенные ряды, ряды подставляются друг в друга, приравниваются коэффициенты при одинаковых степенях и один за другим находятся коэффициенты неизвестной функции. Теорема о существовании и единственности решений дифференциальных уравнений этим способом доказывается мгновенно заодно с теоремой о зависимости от начальных условий, если только не заботиться о сходимости получающихся рядов. Что касается сходимости, то ряды эти сходятся настолько быстро, что Ньютон, хотя сходимости строго и не доказывал, в ней не сомневался. Он владел понятием сходимости и явно вычислял ряды для конкретных примеров с огромным числом знаков (в том же письме Лейбницу Ньютон пишет, что ему «просто стыдно признаться», с каким числом знаков он проделал эти вычисления). Он заметил, что его ряды сходятся как геометрическая прогрессия и потому сомнений в сходимости его рядов у него не было. Вслед за своим учителем Барроу, Ньютон сознавал, что анализ допускает обоснование, но совершенно справедливо не считал полезным на нем задерживаться («Можно было бы удлинить апагогическим рассуждением,-писал Барроу,-но для чего?»).
|
1 |
Оглавление
|