Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
4.2.1. МЕТОДЫ С ПРИМЕНЕНИЕМ ДВУПОЛЯРНЫХ И ОДНОПОЛЯРНЫХ ИМПУЛЬСОВВ простейшем случае передачи в первичной полосе частот сигналы данных передаются непосредственно в форме двуполярных или однополярных импульсов, как показано на рис. 4.16. Передача двуполярными импульсами предпочтительнее, так как на приеме при нулевом пороговом уровне решение не зависит от их амплитуд (рис. 4.166). При однополярных сигналах пороговый уровень зависит от амплитуды на приеме Так как однополярные и двуполярные сигналы содержат постоянные составляющие (см. разд. 4.1.1), то канал связи должен пропускать постоянный ток, т. е. передатчик и приемник должны быть гальванически связаны. Спектральная плотность мощности случайной последовательности прямоугольных двуполярных импульсов в порядке иллюстрации приведена на рис. 4.24 (кривая 1). Изменения формы сигналов в непупинизированных кабелях и возникающая от этого межеимвольная интерференция при наиболее распространенных скоростях до 10 кбит/с и дальностях в несколько километров еще так малы, что искажения прямоугольных импульсов можно не учитывать. Поэтому в таких случаях можно передавать и неизохронные сигналы данных. Конечно, можно уменьшить искажения и увеличить дальность, если корректировать, линию (см. разд. 5.3, а также том 2, разд. 7.3.1.1 и 7.4.1.2).
Рис. 4.16. Графики, иллюстрирующие методы передачи в первичной полосе частот с помощью однополярных (а) и двуполярных (б) прямоугольных импульсов Применение импульсов специальной формы возможно и при неизохронной передаче данных. Однако без межсимвольной интерференции могут быть переданы только изохронные данные (см. разд. 4.1.)). При синхронной передаче длинной последовательности нулей или единиц в приемнике вследствие отсутствия смены посылок синхронизм между тактами и данными может не сохраняться. С помощью соответствующих мер, например путем перемешивания передаваемых данных (скремблирования — см. разд. 4.4.1), следует добиваться, чтобы количество смен посылок всегда было достаточным для сохранения синхронизма. Однако однополярные и двуполярные сигналы могут быть переданы и по каналам, не пропускающим постоянного тока, если на приеме корректируется завал характеристики канала в области нижних частот, т. е. восстанавливается постоянная составляющая сигнала. Это обеспечивается схемой с обратной связью по решению (рис. 4.17); в канале обратной связи она имеет фильтр нижних частот, компенсирующий фильтрацию высших частот в прямом канале. Недостатком такого метода является его чувствительность к помехам и искажениям принимаемого сигнала [4.8].
Рис. 4.17. Приемник с обратной связью по решению для восстановления постоянной составляющей При описываемых далее методах постоянная составляющая отсутствует с самого начала.
|
1 |
Оглавление
|