Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
6.2.2. СИСТЕМЫ С ПОТЕРЯМИВ системах с потерями важнейшим показателем пропускной способности коммутационной схемы является вероятность потерь
.Величина Важнейшим примером системы с потерями является коммутационная схема, которая в сети с коммутацией каналов располагается в тракте соединения между вызывающей и вызываемой оконечными установками, а освобождения соединительной линии, ведущей к следующему узлу коммутации, промежуточной или отводящей линии в рассматриваемом узле коммутации не ожидается. Остановимся далее только на простом в математическом отношении случае, когда длительность занятия имеет экспоненциальное распределение. Даже если определенная система телеобработки данных, которая обслуживается сетью передачи данных с коммутацией каналов, всегда требует соединений с одинаковой длительностью, то во всей коммутируемой сети следует рассчитывать на некоторый разброс значений длительности занятия. 6.2.2.1. ПОЛНОДОСТУПНЫЕ СХЕМЫИсследования по теории телетрафика, насколько это возможно, исходят из анализа состояний системы. При полной доступности важно не то, какие именно выводы заняты, а лишь каково их количество. Вероятность того, что из При случайном обмене первого рода поступление вызовов постоянно, т. е. не зависит от состояния системы, поэтому вероятность потерь совпадает с вероятностью состояния
или, если выразить указанную вероятность через интенсивность поступающей нагрузки (рис. 6.13),
(формула потерь Эрланга), где Вероятность потерь стремится к 1, если средний интервал между вызовами которого ввод свободен до нового вызова, стремится к нулю. Интенсивности поступающей и потерянной нагрузок тогда произвольно велики. Средняя нагрузка стремится к числу выводов, т. е. в предельном случае все выводы постоянно заняты. С другой стороны, вероятность потерь обращается в нуль лишь тогда, когда больше нет поступающей нагрузки (если не учитывать случай, когда число вводов не превышает числа выводов).
Рис. 6.13. Вероятность потерь В в функции от интенсивности поступающей нагрузки, отнесенной к числу выводов Полная доступность в одноступенчатой схеме с 6.2.2.2. НЕПОЛНОДОСТУПНЫЕ СХЕМЫПри неполной доступности вероятность потерь возрастает, так как к потерям ведут не только те вызовы, которые поступают, когда все выводы заняты, но и те, которые поступают, когда свободные выводы недоступны. Это можно особенно просто сформулировать математически при случайной нагрузке первого рода. При доступности
где
Простейшая одноступенчатая неполяодоступная схема является результатом подразделения вводов или соответственно поступающей нагрузки и выводов на подгруппы с полной доступностью. При подразделении на В схемах со смешивающими ступенями (см. рис. 6.10) вероятность потерь меньше, чем при подразделениии на подгруппы. Однако расчет вероятностей состояний, а тем самым и вероятностей потерь составляет в данном случае, как и для других неполнодоступных схем, особую проблему из-за большого числа различных состояний.
|
1 |
Оглавление
|