Главная > Материаловедение (Арзамасов Б. Н.)
Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Введение

Материаловедением называют прикладную науку о связи состава, строения и свойств материалов. Решение важнейших технических проблем, связанных с экономией материалов, уменьшением массы машин и приборов, повышением точности, надежности и работоспособности механизмов и приборов во многом зависит от развития материаловедения. Непрерывный процесс создания новых материалов для современной техники обогащает науку о материалах, которая стимулирует появление новых технических идей. Революционную роль сыграли полупроводниковые материалы и жидкие кристаллы в электронике, композиционные материалы в авиации и ракетостроении, сверхпроводники и аморфные сплавы в электронике и радиотехнике и т. д.

Теоретической основой материаловедения являются соответствующие разделы физики и химии, однако наука о материалах в основном развивается

экспериментальным путем. Поэтому разработка новых методов исследования строения (структуры) и физико-механических свойств материалов способствует дальнейшему развитию материаловедения.

Электронная микроскопия тончайших металлических фольг и нейтронография позволяют изучать элементы кристаллической структуры, ее дефекты и закономерности превращений под воздействием внешних факторов (температура, давление и др.).

Изучение физических (плотность, электропроводимость, теплопроводность, магнитная проницаемость и др.), механических (прочность, пластичность, твердость, модуль упругости и др.), технологических (жидкотекучесть, ковкость, обрабатываемость резанием и др.) и эксплуатационных свойств (сопротивление коррозии, изнашиванию и усталости, жаропрочность, хладостойкость и др.) позволяет определить области рационального использования различных материалов с учетом экономических требований.

Большой вклад в развитие науки о материалах внесли русские и советские ученые. П. П. Аносов (1799-1851 гг.) впервые установил связь между строением стали и ее свойствами. Д. К. Чернов (1839-1921 гг.), открывший полиморфизм стали, всемирно признан основоположником научного металловедения. Большое значение в развитии методов физико-химического исследования и классификации сложных фаз в металлических сплавах имели работы Н. С. Курнакова (1860-1941 гг.) и его учеников. Разработка теории и технологии термической обработки стали связана с именами С. С. Штейнберга (1872— 1940 гг.), Н. А. Минкевича (1883 - 1942 гг.). Исследованию механизма и кинетики фазовых превращений в металлических сплавах посвящены работы крупных советских ученых С. Т. Конобеевского, А. А. Байкова, Г. В. Курдюмова, В. Д. Садовского, А. А. Бочвара, С. Т. Кишкина, Н. В. Агеева и многих других.

Работы крупнейшего русского химика A. М. Бутлерова (1828-1886 гг.), создавшего теорию химического строения органических соединений, создали научную основу для получения синтетических полимерных материалов. На основе работ С. В. Лебедева впервые в мире было создано промышленное производство синтетического каучука. Большое значение для развития полимерных материалов имели структурные исследования B. А. Каргина и его учеников.

Среди зарубежных ученых большой вклад в изучение железоуглеродистых сплавов внесли А. Ле-Шателье (Франция), Р. Аустен (Англия), Ф. Осмонд (Франция) и др. Важнейшие рентгеноструктурные исследования сплавов провели М. Лауэ и П. Дебай (Германия), У. Г. Брэгг и У. Л. Брэгг (Англия). Широко известны работы Э. Бейна, Р. Мейла (США) и Велера (Германия) в области теории фазовых превращений в сплавах. Над созданием полимерных материалов работали К. Циглер (ФРГ) и Д. Натта (Италия).

Categories

1
Оглавление
email@scask.ru