Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
14.5. Радиационно-стойкие материалыМатериалы под действием облучения испытывают структурные превращения, которые приводят к нежелаемым изменениям свойств в эксплуатации. Наиболее сильное влияние оказывает нейтронное облучение. Влияние облучения а-частицами, протонами, тем более легкими Р-частицами и у-излучения менее сильно. В связи с этим материалы, эксплуатирующиеся в условиях облучения, должны быть радиационно стойкими. Радиационная стойкость — стабильность структуры и свойств в условиях облучения. Наибольшее влияние структурные изменения от облучения оказывают на механические свойства и коррозионную стойкость. Влияние облучения на структуру и механические свойства.Облучение приводит к образованию точечных и линейных дефектов, микропор и других структурных повреждений материала. При облучении происходит смещение атомов облучаемого материала в межузлия и образование вакансий. Плотность точечных дефектов увеличивается. Число вакансий, создаваемых одной частицей, зависит от ее вида и энергии, а также от свойств облучаемого вещества (табл. 14.12). Одна частица нейтрона, обладающая меньшей энергией, чем а-частица и протон, создает несравнимо больше структурных повреждений. Число вакансий, образовавшихся в алюминии, больше, чем в бериллии, что определяется большей энергией межатомной связи в последнем. Степень изменения свойств при облучении зависит от суммарного потока ТАБЛИЦА 14.12. Число ваканский в металле, созданных одной частицей
При облучении большими потоками нейтроны не только смещают атомы материала в межузлия, но возбуждают их, передавая часть своей энергии. При возбуждении усиливаются колебания атома и его соседей в узлах решетки, что сопровождается локальным повышением температуры в небольшом объеме кристалла. Нагрев вызывает радиационный отжиг. Вакансии и атомы межузлия взаимодействуют - аннигилируют, что уменьшает концентрацию дефектов. Одновременно идет процесс образования скоплений вакансий, которые при очень больших потоках превращаются либо в дислокационные петли, либо в микропоры, что приводит к разбуханию. Кроме того, в некоторых материалах при облучении происходят ядерные реакции с выделением газообразных продуктов. Облучение органических материалов может приводить к разрушению связей в молекулах и образованию новых молекул с иным химическим составом и свойствами. Облучение при температуре ниже температуры рекристаллизации низкотемпературное облучение влияет на структурные изменения и механические свойства металлов и сплавов так же, как при холодной пластической деформации: материал упрочняется, но теряет пластичность. Максимальная прочность углеродистых сталей при 20 °С достигается при облучении суммарным нейтронным потоком
Рис. 14.18. Изменение механических свойств при Облучение при температуре выше температуры рекристаллизации — высокотемпературное облучение сопровождается радиационным отжигом, который способствует восстановлению структуры и механических свойств. Перлитные стали при температуре облучения 250-450 °С мало изменяют свойства, а при температуре выше 450 °С свойства практически не изменяются, так как рекристаллизация проходит полностью. Аустенитные стали стабильны при температуре выше 600 °С. Алюминий и магний, имеющие низкие температуры рекристаллизации, радиационностойки при температуре выше 150 °С. Пластичность не меняется, а прочность даже увеличивается (рис. 14.19). Упрочнение, полученное в результате низкотемпературного облучения, сохраняется при последующем нагреве до температуры ниже температуры рекристаллизации. В молибдене упрочнение, полученное при облучении
Рис. 14.19. Изменение механических свойств при 20 °С алюминия после высокотемпературного облучения нейтронами
Рис. 14.20. Изменение 100-часовой длительной прочности никелевого сплава восстанавливаются лишь в процессе отжига при 1000 °С. Влияние температуры нагрева при облучении может быть более сложным, если сплав при этом испытывает структурные превращения, например, распад пересыщенных твердых растворов (старение или отпуск), так как облучение активизирует диффузионные процессы. Именно этим объясняется высокотемпературная хрупкость аустенитных хромоникелевых сталей. Пластичность облученной стали восстанавливается при 500 — 700 °С, а затем при дальнейшем нагреве вновь снижается. Длительная прочность при облучении всегда снижается, особенно в стареющих сплавах. Это вызвано активизацией диффузионных процессов под действием облучения, которые ответственны за разрушение при повышенных температурах. Снижение жаропрочности при облучении усиливается с увеличением нейтронного потока, температуры облучения и температуры испытания (рис. 14.20). При высокотемпературном облучении очень большими потоками нейтронов в некоторых металлах (аустенитные хромоникелевые стали и сплавы, сплавы на основе Бериллий, облученный при температуре Разбухание вызывает изменение формы и размеров деталей, а также ухудшение механических свойств. Оно усиливается скоплением в образовавшихся при облучении микропорах
Рис. 14.21. Влияние облучения при 450 °С на относительное увеличение объема аустенитной стали молекулярного водорода либо водородосодержащих газов с большим внутренним давлением. Дополнительное легирование хромоникелевых сталей Ti, Mo, Nb уменьшает разбухание. Возможно это результат уменьшения растворимости и скорости диффузии водорода в таком сложнолегированном аустените. Холодная пластическая деформация аустенитных сталей снижает разбухание, видимо, по той же причине. Перлитные и ферритные высокохромистые стали, растворимость водорода в которых мала, менее склонны к разбуханию.
|
1 |
Оглавление
|