Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Легированные высокопрочные стали.В лучших низко- и среднеуглеродистых сталях после типичной для них термической обработки прочность, оцениваемая временным сопротивлением, ограничивается значениями ниже Развитие техники, стремление к созданию машин наименьшей массы требуют применения высокопрочных сталей, имеющих Высокопрочное состояние в сочетании с достаточно высоким сопротивлением хрупкому разрушению может быть получено при использовании: 1) среднеуглеродистых комплексно-легированных сталей после низкого отпуска или термомеханической обработки; 2) мартенситно-стареющих сталей; 3) метастабильных аустенитных сталей. Среднеуглеродистые комплекснолегированные низкоотпущенные стали. ТАБЛИЦА 8.7. Механические свойства высокопрочных сталей
После закалки и низкого отпуска уровень прочности стали определяется содержанием углерода и практически не зависит от присутствия легирующих элементов. Увеличение содержания углерода до 0,4% повышает временное сопротивление до Повышение вязкости достигается прежде всего легированием никелем К распространенным высокопрочным сталям относятся стали Среднеуглеродистые стали, упрочненные термомеханической обработкой. Термомеханическая обработка (ТМО) совмещает два механизма упрочнения — пластическую деформацию аустенита и закалку — в единый технологический процесс. Такое комбинированное воздействие применительно к среднеуглеродистым легированным сталям — В зависимости от условий деформации аустенита - выше или ниже температуры рекристаллизации - различают соответственно высокотемпературную (ВТМО) и низкотемпературную (НТМО) термомеханическую обработку. При ВТМО (рис. 8.10, а) сталь деформируют при температуре выше температуры
Рис. 8.10. Схема термомеханической обработки стали: ТМО обоих видов заканчивается низким отпуском при 100-200 °С. При ТМО повышается весь комплекс механических свойств и особенно пластичность и вязкость, что наиболее важно для высокопрочного состояния. По сравнению с обычной обработкой прирост прочности при ТМО составляет 200 — 500 МПа, т. е. 10-20%. Характеристики пластичности и вязкости повышаются в Улучшение комплекса механических свойств обусловлено формированием специфического структурного состояния. Деформация создает в аустените высокую плотность дислокаций, образующих из-за процесса полигонизации устойчивую ячеистую субструктуру, которая наследуется мартенситом при закалке. При этом субграницы тормозят движение дислокаций и локализируют деформацию внутри зерна; в результате прочность повышается. В то же время субграницы ведут себя как полупроницаемые барьеры. Они допускают прорыв дислокаций, их передачу из мест скоплений в соседние субзерна. Это вызывает пластическую релаксацию локальных напряжений и служит причиной повышенных пластичности и вязкости. Наибольшее упрочнение ВТМО обеспечивает меньшее упрочнение Область ВТМО расширяет явление обратимости эффекта упрочнения. Оно состоит в том, что свойства, полученные при ВТМО, наследуются после повторной закалки. Это позволяет закладывать определенный ресурс свойств в стальные полуфабрикаты (поковки, прутки, листы и т. п.), подвергая их ВТМО на металлургическом заводе. Улучшить свойства среднеуглеродистых легированных сталей можно холодной пластической деформацией низкоотпущенного мартенсита. Небольшая деформация (5-20%) увеличивает временное сопротивление и особенно предел текучести (до 25%) сталей. Наиболее высокая прочность Мартенситно-стареющие стали. Это особый класс высокопрочных материалов, превосходящих по конструкционной прочности и технологичности рассмотренные выше среднеуглеродистые стали. Их основа - безуглеродистые Высокая прочность этих сталей достигается совмещением двух механизмов упрочнения: мартенситного Никель стабилизирует у-твердый раствор, сильно снижая температуру Мартенситно-стареющие стали закаливают от Основное упрочнение достигается при старении (480— 520 °С), когда из мартенсита выделяются мелкодисперсные частицы вторичных фаз При прочности ТАБЛИЦА 8.8. Свойства мартенситно-стареющих сталей
широком диапазоне температур от криогенных до 450-500 °С. Другое важное достоинство этого класса сталей - высокая технологичность. Они обладают неограниченной прокаливаемостью, хорошо свариваются, до старения легко деформируются и обрабатываются резанием. При термической обработке практически не происходит коробления и исключено обезуглероживание. Стали со стареющим мартенситом, несмотря на высокую стоимость, применяют для наиболее ответственных деталей в авиации, ракетной технике, судостроении и как пружинный материал в приборостроении. Метастабильные аустенитные стали (трипстали) - новый класс высокопрочных материалов повышенной пластичности. Они относятся к высоколегированным сталям. Их состав, который ориентировочно может быть выражен марками
Рис. 8.11. Вязкость разрушения высокопрочных сталей: 1 - метастабильных аустенитных; 2 — мартенситно-стареющих; 3 — хромоникелевых Значения Высокая пластичность и вязкость разрушения обусловлены развитием мартенситного превращения в процессе деформирования. Дело в том, что при тепловой обработке аустенит обедняется углеродом и легирующими элементами и становится менее устойчивым (ме-тастабильным). Благодаря этому повторная пластическая деформация вызывает превращение метастабильного аустенита в мартенсит деформации. Механизм повышения пластичности и вязкости разрушения связан с Применение метастабильных аустенитных сталей ограничивается сложностью деформационно-термического упрочнения. Для высоких степеней деформации при низких температурах требуются мощные деформирующие средства. Области применения сталей:
Рис. 8.12. Соотношение между пределом текучести и пластичностью высокопрочных сталей: 1 — среднеуглеродистых, упрочненных ТМО; 2 — мартенситно-стареющих; 3 — среднеуглеродистых легированных без ТМО; 4 — метастабильных аустенитных детали авиаконструкций, броневой лист, проволока тросов и др. Взаимное расположение высокопрочных сталей различных классов по прочности и пластичности представлено на рис. 8.12. Из него видно, что наибольшей прочностью обладают среднеуглеродистые стали после термомеханической обработки, а наибольшей пластичностью при одинаковой прочности - метастабильные аустенитные стали.
|
1 |
Оглавление
|