Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике 7.3. Методы повышения конструкционной прочностиВысокая прочность и долговечность конструкций при минимальной массе и наибольшей надежности достигаются технологическими, металлургическими и конструкторскими методами. Наибольшую эффективность имеют технологические и металлургические методы, цель которых - повышение механических свойств и качества материала. Из механических свойств важнейшее - прочность материала, повышение которой при достаточном запасе пластичности и вязкости ведет к снижению материалоемкости конструкции и в известной степени к повышению ее надежности и долговечности. Прочность - свойство, зависящее от энергии межатомной связи, структуры и химического состава материала. Энергия межатомного взаимодействия непосредственно определяет характеристики упругих свойств (модули нормальной упругости и сдвига), а также так называемую теоретическую прочность. Модули нормальной упругости и сдвига являются константами материала и структурно нечувствительны. Теоретическая прочность (сопротивление разрыву межатомных связей) в реальных кристаллах из-за наличия структурных дефектов не достигается. Реальная прочность на два-три порядка ниже теоретической и определяется не столько межатомными силами связи, сколько структурой материала. В гл. 4 указывалось, что уровень прочности (сопротивление пластической деформации) зависит главным образом от легкости перемещения дислокаций. В связи с этим современные методы повышения прочности материала основаны на создании такого структурного состояния, которое обеспечивало бы максимальную задержку (блокировку) дислокаций. Методы упрочнения рассмотрены в предыдущем разделе. Напомним, что к ним относятся легирование, пластическая деформация, термическая, термомеханическая и химико-термическая обработка. Повышение прочности указанными методами основано на ряде структурных факторов. 1. Увеличение плотности дислокаций. Силовые поля вокруг дислокаций являются эффективными барьерами для других близко расположенных дислокаций. В связи с этим чем больше плотность дислокаций, тем выше сопротивление пластическому деформированию. Теория дислокаций дает следующую зависимость между пределом текучести и плотностью дислокаций
где -предел текучести до упрочнения; а - коэффициент, учитывающий вклад других механизмов торможения дислокаций; Ь-вектор Бюргерса; - модуль сдвига. Целесообразно увеличивать плотность дислокаций до При большем значении в силу неравномерного распределения структурных дефектов отдельные объемы материала пересыщаются дислокациями. Это вызывает нарушение сплошности в виде субмикроскопических трещин и снижение прочности. 2. Создание дислокационных барьеров в виде границ зерен, субзерен, дисперсных частиц вторичных фаз. Подобные препятствия на пути движения дислокаций требуют дополнительного повышения напряжения для их продвижения и тем самым способствуют упрочнению. Роль эффективного барьера выполняют границы зерен и субзерен (блоков мозаики). Скользящая дислокация вынуждена останавливаться у этих границ, поскольку в соседних зернах (субзернах) плоскость скольжения имеет другую ориентацию. Повышение прочности при измельчении зерна (или субзерна) описывается уравнением Холла—Петча:
где - напряжение, необходимое для движения свободной дислокации; к - коэффициент, характеризующий прочность блокирования дислокаций; — диаметр зерна (субзерна). Важная особенность этого фактора упрочнения состоит в том, что измельчение зерна (увеличение протяженности их границ) сопровождается повышением ударной вязкости. Объясняется это уменьшением размеров зародышевых трещин и затруднением их развития. Трещина вынуждена изменять направление движения при переходе от одного зерна к другому; в результате ее траектория и сопротивление движению увеличиваются. Сильное торможение передвижению дислокаций создают дисперсные частицы вторичной фазы. Такой фактор упрочнения характерен для гетерогенных сплавов, подвергнутых закалке и старению. В этом случае дислокации, перемещаясь в плоскости скольжения, должны либо перерезать частицы, либо их огибать. 3. Образование полей упругих напряжений, искажающих кристаллическую решетку. Такие поля образуются вблизи точечных дефектов - вакансий, примесных атомов и, главным образом, атомов легирующих элементов. Упрочнение при легировании растет пропорционально концентрации легирующего элемента в твердом растворе и относительной разницы атомных радиусов компонентов. Атомы внедрения (С, О, Н, N) могут вносить большой вклад в упрочнение, если они скапливаются на дислокациях и блокируют их, образуя сегрегации или атмосферы Коттрелла. Комбинацией различных структурных факторов упрочнения можно значительно повысить характеристики прочности Однако достигаемая прочность остается все же значительно ниже теоретической. Вместе с тем повышение прочности, основанное на уменьшении подвижности дислокаций, сопровождается снижением пластичности, вязкости и тем самым надежности. Проблема повышения конструкционной прочности состоит не столько в повышении прочностных свойств, сколько в том, как при высокой прочности обеспечить высокое сопротивление вязкому разрушению, т. е. надежность материала. В углеродистых сталях закалкой на мартенсит и низким отпуском можно получить при содержании 0,4% С при Однако при такой прочности стали хрупки , эксплуатационно ненадежны. Заданные прочность, надежность, долговечность достигаются формированием определенного структурного состояния. Оно должно сочетать эффективное торможение дислокаций с их равномерным распределением в объеме материала либо, что особенно благоприятно, допускать определенную подвижность скапливающихся у барьеров дислокаций. Эти требования исходят из того, что хрупкое разрушение инициируют скопления дислокаций критической плотности, например, у непроницаемых барьеров, где возникают опасные локальные напряжения. Их релаксация идет двумя путями: 1) образованием зародыша хрупкой трещины; 2) прорывом и эстафетной передачей дислокаций в смежные области. Второй путь - путь пластической релаксации локальных напряжений - возможен при наличии полупроницаемых барьеров. Их роль, в частности, выполняют малоугловые границы - границы субзерен. Формированию благоприятной структуры и обеспечению надежности способствуют рациональное легирование, измельчение зерна, повышение металлургического качества. Рациональное легирование предусматривает введение в сталь и сплавы нескольких элементов при невысокой концентрации каждого с тем, чтобы повысить пластичность и вязкость. Измельчение зерна осуществляется легированием и термической обработкой, особенно при использовании высокоскоростных способов нагрева - индукционного и лазерного. Наиболее эффективное измельчение субструктуры (блоков мозаики) достигается при высокотемпературной термомеханической обработке (ВТМО). Она предусматривает интенсивную пластическую деформацию аустенита с последующей закалкой, при которой наклепанный аустенит превращается в мартенсит, и низкий отпуск. Такая комбинированная обработка формирует структуру с высокой плотностью дислокаций и достаточно равномерным их распределением вследствие сильного дробления кристаллов мартенсита на отдельные субзерна (блоки). В образующейся субструктуре дислокации связаны в стабильные конфигурации, а субграницы выполняют роль полупроницаемых барьеров. В результате ВТМО обеспечивает наиболее благоприятное сочетание высокой прочности с повышенной пластичностью, вязкостью и сопротивлением разрушению. Более надежной работе высоконапряженных деталей способствует повышение чистоты металла, его металлургического качества. Повышение чистоты стали связано с удалением вредных примесей (см. п. 8.2)-серы, фосфора, газообразных элементов-кислорода, водорода, азота и зависящих от их содержания неметаллических включений - оксидов, сульфидов и др. Неметаллические включения, серу и газообразные примеси удаляют из металла в процессе переплава. В промышленности применяют несколько способов переплава: вакуумно-дуговой (ВДП), электронно-лучевой (ЭЛП), элек-трошлаковый (ЭШП), а также вакуумноиндукционную плавку (ВИ), рафинирование синтетическим шлаком. При вакуумной плавке и вакуумных переплавах металл наиболее полно очищается от растворенных газов. Сера практически не удаляется. При рафинировании синтетическим шлаком и ЭШП, наоборот, наиболее полно удаляется сера. При равной прочности более чистый металл обладает более высоким сопротивлением вязкому разрушению и более низким порогом хладноломкости. Для повышения циклической прочности и износостойкости важно затруднить деформацию поверхности деталей. Это достигается технологическими методами поверхностного упрочнения: поверхностной закалкой, химико-термической обработкой (азотированием, цементацией), поверхностным пластическим деформированием (обдувкой дробью, обкаткой роликами). Конструкторские методы предусматривают обеспечение равнопрочности высоконапряженных деталей. При их проектировании избегают резких перепадов жесткости, глубоких канавок, галтелей малого радиуса и других конструктивных надрезов. Если этого избежать нельзя, то для смягчения концентрации напряжений применяют местное упрочнение для формирования остаточных напряжений сжатия. Рассмотренные выше технологические и металлургические методы повышения конструкционной прочности сталей и сплавов включают: 1) методы упрочнения, вызывающие увеличение плотности дислокаций и уменьшение их подвижности; 2) методы обеспечения необходимого запаса пластичности и вязкости, предусматривающие более равномерное распределение дислокаций, а также очистку от охрупчивающих материал примесей. Арсенал структурных факторов, используемых во второй группе методов, определяет следующий допустимый уровень статической прочности в конструкциях разного назначения: для сталей титановых сплавов алюминиевых сплавов Для ряда отраслей техники этого оказывается недостаточно. Принципиально иной способ достижения высокой конструкционной прочности использован в композиционных материалах - новом классе высокопрочных материалов. Такие материалы представляют собой композицию из мягкой матрицы и высокопрочных волокон. Волокна армируют матрицу и воспринимают всю нагрузку. В этом состоит принципиальное отличие композиционных материалов от обычных сплавов, упрочненных, например, дисперсными частицами. В сплавах основную нагрузку воспринимает матрица (твердый раствор), а дисперсные частицы тормозят в ней движение дислокаций, сильно снижая тем самым ее пластичность. В композиционных материалах нагрузку воспринимают высокопрочные волокна, связанные между собой пластичной матрицей. Матрица нагружена слабо и служит для передачи и распределения нагрузки между волокнами. Композиционные материалы отличаются высоким сопротивлением распространению трещин, так как при ее образовании, например, из-за разрушения волокна, трещина «вязнет» в мягкой матрице. Кроме того, композиционные материалы, использующие высокопрочные и высокомодульные волокна и легкую матрицу, могут обладать высокими удельной прочностью и жесткостью.
|
1 |
Оглавление
|