Общая характеристика и классификация алюминиевых сплавов.
Алюминиевые сплавы характеризуют высокой удельной прочностью, способностью сопротивляться инерционным и динамическим нагрузкам, хорошей технологичностью. Временное сопротивление алюминиевых сплавов достигает 500 — 700 МПа при плотности не более
По удельной прочности некоторые алюминиевые сплавы
км) Приближаются или соответствуют высокопрочным сталям
км). Большинство алюминиевых сплавов имеют хорошую коррозионную стойкость (за исключением сплавов с медью), высокие теплопроводность и электропроводимость и хорошие технологические свойства (обрабатываются давлением, свариваются точечной сваркой, а специальные - сваркой плавлением, в основном хорошо обрабатываются резанием). Алюминиевые сплавы пластичнее магниевых и многих пластмасс. Большинство из них превосходят магниевые сплавы по коррозионной стойкости, пластмассы - по стабильности свойств.
Основными легирующими элементами алюминиевых сплавов являются Си. Mg, Si, Mn, Zn; реже - Li, Ni, Ti. Многие легирующие элементы образуют с алюминием твердые растворы ограниченной переменной растворимости и промежуточные фазы:
и др. (рис. 12.1). Это дает возможность подвергать сплавы упрочняющей термической обработке. Она состоит из закалки на пересыщенный твердый раствор
Рис. 12.1. Диаграмма состояния алюминий — легирующий элемент (схема): А — деформируемые сплавы; В — литейные сплавы; I, II — сплавы, неупрочняемые и упрочняемые термической обработкой соответственно
Рис. 12.2. Влияние легирующих элементов на температуру рекристаллизации алюминия
и естественного или искусственного старения (см. п. 5.4).
Легирующие элементы, особенно переходные, повышают температуру рекристаллизации алюминия (рис. 12.2). При кристаллизации они образуют с алюминием пересыщенные твердые растворы. В процессе гомогенизации и горячей обработки давлением происходит распад твердых растворов с образованием тонкодисперсных частиц интерметаллидных фаз, препятствующих прохождению процессов рекристаллизации и упрочняющих сплавы. Это явление получило название структурного упрочнения, а применительно к прессованным полуфабрикатам - пресс-эффекта. По этой причине некоторые алюминиевые сплавы имеют температуру рекристаллизации выше температуры закалки. Для снятия остаточных напряжений в нагартованных полуфабрикатах (деталях), полученных холодной обработкой давлением, а также в фасонных отливках проводят низкий отжиг. Температура отжига находится в пределах 150-300°С.
Конструкционная прочность алюминиевых сплавов зависит от примесей
Они образуют в сплавах нерастворимые в твердом растворе фазы:
и др. Независимо от формы (пластинчатой, игольчатой и др.) кристаллы этих фаз снижают пластичность, вязкость разрушения, сопротивление развитию трещин. Легирование сплавов марганцем уменьшает вредное влияние примесей, так как он связывает их в четвертую фазу
кристаллизирующуюся в компактной форме. Однако более эффективным способом повышения конструкционной прочности является снижение содержания примесей с
до
(чистый сплав), а иногда и до сотых долей процента (сплав повышенной чистоты). В первом случае к марке сплава добавляют букву
например,
во втором - пч, например,
Особенно значительно повышаются характеристики пластичности и вязкости разрушения в направлении, перпендикулярном пластической деформации. Например, ударная вязкость сплава
после естественного старения более чем в 2 раза, а относительное удлинение в 1,5 раза выше, чем у сплава
после той же обработки. Для сплава
коэффициент
тогда как для сплава
он равен
Сплавы повышенной чистоты используют для ответственных нагруженных деталей, например, для силовых элементов конструкции пассажирских и транспортных самолетов.
Алюминиевые сплавы классифицируют по технологии изготовления (деформируемые, литейные, спеченные), способности к термической обработке (упрочняемые и неупрочняемые) и свойствам (см. рис. 12.1).