Ковалентные кристаллы.
Это кристаллы, в которых преобладает ковалентный тип связи. Их образуют элементы IV, V, VI подгруппы В. Они электроотрицательны, так как имеют большой потенциал ионизации, и, вступая во взаимодействие с элементами других групп, отбирают валентные электроны, достраивая свою валентную зону; при взаимодействии друг с другом атомы обобществляют свои валентные электроны с соседними атомами, достраивая таким образом валентную зону.
Ковалентные кристаллы образуют атомы углерода, кремния, германия, сурьмы, висмута и др.
Число атомов, с которыми
Рис. 1.11. Кристаллическая решетка иода: а — схема; б — пространственное изображение
происходит обобществление электронов, зависит от валентности элемента и может быть определено согласно правилу где — валентность элемента. Например, для углерода это число равно 4.
Рассмотрение такого обобществления проще начать с простейшей системы — молекулы водорода. Этот случай представляет типичный пример ковалентной связи, осуществляемой двумя электронами с антинаправленными спинами. В электрическом поле двух протонов находятся два электрона. Оба электрона молекулы водорода принадлежат обоим атомам и, вследствие перекрытия валентных зон, все время «кочуют» от одного атома к другому, образуя обменные ковалентные силы.
В ковалентных кристаллах в узлах кристаллической решетки располагаются атомы, между которыми действуют те же силы.
Например, атом углерода имеет четыре валентных электрона, посредством которых он образует четыре направленные связи и вступает в обменное взаимодействие с четырьмя соседними атомами. Между каждой парой атомов происходит обмен валентными электронами, подобно атомам в молекуле водорода.
В природе углерод встречается в двух кристаллических формах (рис. 1.12). Обе кристаллические решетки характеризует наличие у каждого атома четырех соседей. В сложной решетке алмаза все четыре соседа располагаются на одинаковом расстоянии от центрального атома (хорошо видно в элементе, показанном штриховой линией).
В слоистой гексагональной решетке графита один из четырех соседей (см. жирные линии на рис. 1.12) находится на значительном удалении. Между тремя атомами в плоскости основания решетки действуют ковалентные силы, а между основаниями-слабые силы Ван-дер-Ваальса. При деформации графита в первую очередь разрушаются связи между слоями, чем и объясняется низкая твердость графита. Коэффициент линейного расширения велик в направлении действия сил Ван-дер-Ваальса (см. табл. 1.2).
Ковалентная связь характеризуется направленностью, так как каждый атом вступает в обменное взаимодействие с определенным числом соседних атомов. Вследствие этого атомы в ковалентных кристаллах укладываются некомпактно и образуют кристаллические структуры с небольшим координационным числом. Так, кубическая решетка алмаза имеет координационное число
Направленность межатомных связей и неплотноупакованные кристаллические структуры приводят к низкой пластичности и высокой твердости (алмаз самый твердый материал).
Вследствие большой энергии связи ковалентные кристаллы характеризуются высокими температурами плавления (у алмаза она равна 5000 °С) и испарения.
Образование заполненных валентных зон при такой связи превращает ковалентные кристаллы в полупроводники и даже диэлектрики. Алмаз - полупроводник. Хорошая электрическая проводимость графита объясняется заменой одной из четырех ковалентных связей связью Ван-дер-Ваальса, в результате чего появляются свободные носители электрического тока.
Рис. 1.12. Кристаллические решетки алмаза (а) и графита (б)
Температурный коэффициент электрического сопротивления у ковалентных кристаллов имеет отрицательное значение, т. е. при нагреве электрическое сопротивление снижается. К ковалентным кристаллам относятся многие сложные кристаллические вещества, состоящие из разнородных атомов, например, карбид кремния, нитрид алюминия и др.