Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Композиционные материалы на металлической основе.Преимуществом композиционных материалов на металлической основе являются более высокие значения характеристик, зависящих от свойств матрицы. Это прежде всего временное сопротивление и модуль упругости при растяжении в направлении, перпендикулярном оси армирующих волокон, прочность при сжатии и изгибе, пластичность, вязкость разрушения. Кроме того, композиционные материалы с металлической матрицей сохраняют свои прочностные характеристики до более высоких температур, чем материалы с неметаллической основой. Они более влагостойки, негорючи, обладают электрической проводимостью. Наиболее перспективными материалами для матриц металлических композиционных материалов являются металлы, обладающие небольшой плотностью (Al, Mg, Ti), и сплавы на их основе, а также никель - широко применяемый в настоящее время в качестве основного компонента жаропрочных сплавов. Свойства некоторых композиционных материалов на металлической основе представлены в табл. 13.4. Материалы с алюминиевой матрицей, нашедшие промышленное применение, в основном армируют стальной проволокой (КАС), борным волокном (ВКА) и углеродным волокном (ВКУ). В качестве матрицы используют как технический алюминий (например, Использование в качестве матрицы сплава (например, Наиболее дешевым, достаточно эффективным и доступным армирующим материалом является высокопрочная стальная проволока. Так, армирование технического алюминия проволокой из стали ВНС9 диаметром 0,15 мм ТАБЛИЦА 13.8. Механические свойства композиционного материала алюминиевый сплав — борные волокна (50 об. %)
Рис. 13.34. Зависимость прочности бороалюминиевых листов от объемного содержания борных волокон высокопрочные алюминиевые сплавы и выходит на уровень соответствующих свойств титановых сплавов. При этом плотность композиций находится в пределах Упрочнение алюминия и его сплавов более дорогими волокнами Объемное содержание волокон,
Бор мало разупрочняется с повышением температуры, поэтому композиции, армированные борными волокнами, сохраняют высокую прочность до 400-500 °С. Промышленное применение нашел материал, содержащий Расчеты показали, что замена сплава Композиционные материалы на алюминиевой основе, армированные углеродными волокнами (ВКУ), дешевле и легче, чем материалы с борными волокнами. И хотя они уступают последним по прочности, обладают близкой удельной прочностью (42 км). Однако изготовление композиционных материалов с углеродным упрочнителем связано с большими технологическими трудностями вследствие взаимодействия углерода с металлическими матрицами при нагреве, вызывающего снижение прочности материала. Для устранения этого недостатка применяют специальные покрытия углеродных волокон. Материалы с магниевой матрицей
Рис. 13.35. Зависимость временного сопротивления прочность При создании композиционных материалов на титановой основе встречаются трудности, вызванные необходимостью нагрева до высоких температур. При высоких температурах титановая матрица становится очень активной; она приобретает способность к газопоглощению, взаимодействию с многими упрочнителями: бором, карбидом кремния, оксидом алюминия и др. В результате образуются реакционные зоны, снижается прочность как самих волокон, так и композиционных материалов в целом. И, кроме того, высокие температуры приводят к рекристаллизации и разупрочнению многих армирующих материалов, что снижает эффект упрочнения от армирования. Поэтому для упрочнения материалов с титановой матрицей используют проволоку из бериллия и керамических волокон тугоплавких оксидов Армирование сплава ТАБЛИЦА 13.9. Механические свойства композиционного материала на основе сплава
Основная задача при создании композиционных материалов на никелевой основе (ВКН) заключается в повышении рабочих температур выше 1000 °С. И одним из лучших металлических упрочнителей, способных обеспечить хорошие показатели прочности при столь высоких температурах, является вольфрамовая проволока. Введение вольфрамовой проволоки в количестве от 40 до 70 об. % в сплав никеля с хромом обеспечивает прочность при 1100°С в течение 100 ч соответственно 130 и 250 МПа, тогда как лучший неармированный никелевый сплав, предназначенный для работы в аналогичных условиях, имеет прочность 75 МПа. Использование для армирования проволоки из сплавов вольфрама с рением или гафнием увеличивает этот показатель на 30-50%. Композиционные материалы применяют во многих отраслях промышленности и прежде всего в авиации, ракетной и космической технике, где особенно большое значение имеет снижение массы конструкций при одновременном повышении прочности и жесткости. Благодаря высоким удельным характеристикам прочности и жесткости их используют при изготовлении, например, горизонтальных стабилизаторов и закрылков самолетов, лопастей винтов и контейнеров вертолетов, корпусов и камер сгорания реактивных двигателей и др. Использование композиционных материалов в конструкциях летательных аппаратов уменьшило их массу на 30-40%, увеличило полезную нагрузку без снижения скорости и дальности полета. В настоящее время композиционные материалы применяют в энергетическом турбостроении (рабочие и сопловые лопатки турбины), автомобилестроении (кузова автомобилей и рефрижераторов, детали двигателей), машиностроении (корпуса и детали машин), химической промышленности (автоклавы, цистерны, емкости), судостроении (корпуса лодок, катеров, гребные винты) и др. Особые свойства композиционных материалов позволяют использовать их в качестве электроизоляционных материалов (органоволокниты), радиопрозрачных обтекателей (стекловолокниты), подшипников скольжения (карбоволокниты) и других деталей.
|
1 |
Оглавление
|