Главная > Материаловедение (Арзамасов Б. Н.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Композиционные материалы на металлической основе.

Преимуществом композиционных материалов на металлической основе являются более высокие значения характеристик, зависящих от свойств матрицы. Это прежде всего временное сопротивление и модуль упругости при растяжении в направлении, перпендикулярном оси армирующих волокон, прочность при сжатии и изгибе, пластичность, вязкость разрушения. Кроме того, композиционные материалы с металлической матрицей сохраняют свои прочностные характеристики до более высоких температур, чем материалы с неметаллической основой. Они более влагостойки, негорючи, обладают электрической проводимостью.

Наиболее перспективными материалами для матриц металлических композиционных материалов являются металлы, обладающие небольшой плотностью (Al, Mg, Ti), и сплавы на их основе, а также никель - широко применяемый в настоящее время в качестве основного компонента жаропрочных сплавов. Свойства некоторых композиционных материалов на металлической основе представлены в табл. 13.4.

Материалы с алюминиевой матрицей, нашедшие промышленное применение, в основном армируют стальной проволокой (КАС), борным волокном (ВКА) и углеродным волокном (ВКУ). В качестве матрицы используют как технический алюминий (например, так и сплавы (АМгб, В95, Д20 и др.).

Использование в качестве матрицы сплава (например, упрочняемого термообработкой (закалка и старение), дает дополнительный эффект упрочнения композиции. Однако в направлении оси волокон он невелик, тогда как в поперечном направлении, где свойства определяются в основном свойствами матрицы, достигает 50% (табл. 13,8).

Наиболее дешевым, достаточно эффективным и доступным армирующим материалом является высокопрочная стальная проволока. Так, армирование технического алюминия проволокой из стали ВНС9 диаметром 0,15 мм увеличивает его прочность в 10-12 раз при объемном содержании волокна 25% и в 14-15 раз при увеличении содержания до после чего временное сопротивление достигает соответственно 1000-1200 и Если для армирования использовать проволоку меньшего диаметра, т. е. большей прочности временное сопротивление композиционного материала увеличится до Таким образом, алюминий, армированный стальной проволокой по основным свойствам значительно превосходит даже


ТАБЛИЦА 13.8. Механические свойства композиционного материала алюминиевый сплав — борные волокна (50 об. %)

Рис. 13.34. Зависимость прочности бороалюминиевых листов от объемного содержания борных волокон

высокопрочные алюминиевые сплавы и выходит на уровень соответствующих свойств титановых сплавов. При этом плотность композиций находится в пределах .

Упрочнение алюминия и его сплавов более дорогими волокнами повышает стоимость композиционных материалов, но при этом эффективнее улучшаются некоторые свойства: например, при армировании борными волокнами модуль упругости увеличивается в 3-4 раза, углеродные волокна способствуют снижению плотности. На рис. 13.34 и ниже показано влияние объемного содержания волокон бора на прочность и жесткость композиции алюминий - бор.

Объемное содержание волокон,

Бор мало разупрочняется с повышением температуры, поэтому композиции, армированные борными волокнами, сохраняют высокую прочность до 400-500 °С. Промышленное применение нашел материал, содержащий непрерывных высокопрочных и высокомодульных волокон бора По модулю упругости и временному сопротивлению в интервале температур он превосходит все стандартные алюминиевые сплавы, в том числе высокопрочные и сплавы, специально предназначенные для работы при высоких температурах что наглядно представлено на рис. 13.35. Высокая демпфирующая способность материала обеспечивает вибропрочность изготовленных из него конструкций. Плотность сплава равна 2650 кг/м3, а удельная прочность -45 км. Это значительно выше, чем у высокопрочных сталей и титановых сплавов.

Расчеты показали, что замена сплава на титановый сплав при изготовлении лонжерона крыла самолета с подкрепляющими элементами из увеличивает его жесткость на 45% и дает экономию в массе около 42%.

Композиционные материалы на алюминиевой основе, армированные углеродными волокнами (ВКУ), дешевле и легче, чем материалы с борными волокнами. И хотя они уступают последним по прочности, обладают близкой удельной прочностью (42 км). Однако изготовление композиционных материалов с углеродным упрочнителем связано с большими технологическими трудностями вследствие взаимодействия углерода с металлическими матрицами при нагреве, вызывающего снижение прочности материала. Для устранения этого недостатка применяют специальные покрытия углеродных волокон.

Материалы с магниевой матрицей характеризуются меньшей плотностью чем с алюминиевой, при примерно такой же высокой прочности и поэтому более высокой удельной прочностью. Деформируемые магниевые сплавы ( и др), армированные борным волокном имеют удельную

Рис. 13.35. Зависимость временного сопротивления и модуля упругости композиционного материала в сравнении со сплавами от температуры испытания

прочность . Хорошая совместимость магния и его сплавов с борным волокном, с одной стороны, позволяет изготовлять детали методом пропитки практически без последующей механической обработки, с другой - обеспечивает большой ресурс работы деталей при повышенных температурах. Удельная прочность этих материалов повышается благодаря применению в качестве матрицы сплавов, легированных легким литием, а также в результате использования более легкого углеродного волокна. Но, как было указано ранее, введение углеродного волокна осложняет технологию и без того нетехнологичных сплавов. Как известно, магний и его сплавы обладают низкой технологической пластичностью, склонностью к образованию рыхлой оксидной пленки.

При создании композиционных материалов на титановой основе встречаются трудности, вызванные необходимостью нагрева до высоких температур. При высоких температурах титановая матрица становится очень активной; она приобретает способность к газопоглощению, взаимодействию с многими упрочнителями: бором, карбидом кремния, оксидом алюминия и др. В результате образуются реакционные зоны, снижается прочность как самих волокон, так и композиционных материалов в целом. И, кроме того, высокие температуры приводят к рекристаллизации и разупрочнению многих армирующих материалов, что снижает эффект упрочнения от армирования. Поэтому для упрочнения материалов с титановой матрицей используют проволоку из бериллия и керамических волокон тугоплавких оксидов карбидов а также тугоплавких металлов, обладающих большим модулем упругости и высокой температурой рекристаллизации Причем целью армирования является в основном не повышение и без того высокой удельной прочности, а увеличение модуля упругости и повышение рабочих температур. Механические свойства титанового сплава , остальное армированного волокнами представлены в табл. 13.9. Как видно из таблицы, наиболее эффективно удельная жесткость повышается при армировании волокнами карбида кремния.

Армирование сплава молибденовой проволокой способствует сохранению высоких значений модуля упругости до Его величина при этой температуре соответствует т. е. снижается на 33%, тогда как временное сопротивление разрыву при этом уменьшается до т. е. более чем в 3 раза.

ТАБЛИЦА 13.9. Механические свойства композиционного материала на основе сплава

Основная задача при создании композиционных материалов на никелевой основе (ВКН) заключается в повышении рабочих температур выше 1000 °С. И одним из лучших металлических упрочнителей, способных обеспечить хорошие показатели прочности при столь высоких температурах, является вольфрамовая проволока. Введение вольфрамовой проволоки в количестве от 40 до 70 об. % в сплав никеля с хромом обеспечивает прочность при 1100°С в течение 100 ч соответственно 130 и 250 МПа, тогда как лучший неармированный никелевый сплав, предназначенный для работы в аналогичных условиях, имеет прочность 75 МПа. Использование для армирования проволоки из сплавов вольфрама с рением или гафнием увеличивает этот показатель на 30-50%.

Композиционные материалы применяют во многих отраслях промышленности и прежде всего в авиации, ракетной и космической технике, где особенно большое значение имеет снижение массы конструкций при одновременном повышении прочности и жесткости. Благодаря высоким удельным характеристикам прочности и жесткости их используют при изготовлении, например, горизонтальных стабилизаторов и закрылков самолетов, лопастей винтов и контейнеров вертолетов, корпусов и камер сгорания реактивных двигателей и др. Использование композиционных материалов в конструкциях летательных аппаратов уменьшило их массу на 30-40%, увеличило полезную нагрузку без снижения скорости и дальности полета.

В настоящее время композиционные материалы применяют в энергетическом турбостроении (рабочие и сопловые лопатки турбины), автомобилестроении (кузова автомобилей и рефрижераторов, детали двигателей), машиностроении (корпуса и детали машин), химической промышленности (автоклавы, цистерны, емкости), судостроении (корпуса лодок, катеров, гребные винты) и др.

Особые свойства композиционных материалов позволяют использовать их в качестве электроизоляционных материалов (органоволокниты), радиопрозрачных обтекателей (стекловолокниты), подшипников скольжения (карбоволокниты) и других деталей.

1
Оглавление
email@scask.ru