Глава 1. СТРОЕНИЕ И СВОЙСТВА МАТЕРИАЛОВ
В природе существуют две разновидности твердых тел, различающиеся по своим свойствам, - кристаллические и аморфные.
Кристаллические тела остаются твердыми, т. е. сохраняют приданную им форму, до вполне определенной температуры, при которой они переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Переход из одного состояния в другое протекает (рис. 1.1) при определенной температуре плавления.
Аморфные тела при нагреве размягчаются в большом температурном интервале, становятся вязкими, а затем переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении.
Кристаллическое состояние твердого тела более стабильно, чем аморфное.
Аморфные тела в отличие от жидкостей имеют пониженную подвижность частиц. Аморфное состояние можно зафиксировать во многих органических и неорганических веществах ускоренным охлаждением из жидкого состояния. Однако при повторном нагреве, длительной выдержке при температурах 20-25 °С, а в некоторых случаях при деформации, нестабильность аморфного твердого тела проявляется в частичном или полном переходе в кристаллическое состояние.
Примерами такого перехода могут служить помутнение неорганических стекол при нагреве и оптики при длительном использовании, частичная кристаллизация плавленого янтаря при нагреве и дополнительная кристаллизация капроновой нити при растяжении, сопровождающаяся упрочнением. Частичная кристаллизация при повторном нагреве показана на структуре кремнистого полимера (рис. 1.2). Кристаллы имеют радиальную симметрию, остальная часть - аморфная.
Кристаллические тела характеризуются
Рис. 1.1. Кривые охлаждения кристаллических тел
Рис. 1.2. Структура кремнистого полимера после повторного нагрева
упорядоченным расположением в пространстве элементарных частиц, из которых они составлены (ионов, атомов, молекул).
Свойства кристаллов зависят от электронного строения атомов и характера взаимодействия их в кристалле; от пространственного расположения элементарных частиц; химического состава, размера и формы кристаллов. Все эти детали строения кристаллов описывает понятие «структура».
В зависимости от размеров структурных составляющих и применяемых методов их выявления используют следующие понятия: тонкая структура, микро- и макроструктура.
Тонкая структура описывает расположение элементарных частиц в кристалле и электронов в атоме. Изучается дифракционными методами (рентгенография, электронография, нейтронография). Анализируя дифракционную картину, получаемую при взаимодействии атомов кристалла с короткими волнами рентгеновских лучей (или волн электронов, нейтронов), можно получить обширную информацию о строении кристаллов.
Большинство материалов состоит из мелких кристалликов (зерен). Наблюдать такие мелкие структурные составляющие - микроструктуру возможно с помощью оптического (размером до или электронного (размером до микроскопа.
Микроскопические методы дают возможность определить размеры и форму кристаллов, наличие различных по своей природе кристаллов, их распределение и относительные объемные количества, форму инородных включений и микропустот, ориентирование кристаллов, наличие специальных кристаллографических признаков (двойникова-ние, линии скольжения и др.). Это далеко не полное перечисление характеризует обширность тех сведений, которые можно получить при помощи микроскопа.
Изучая строение кристаллов невооруженным глазом или при небольших увеличениях с помощью лупы - макроструктуру, можно выявить характер излома, усадочные раковины, поры, выявить размеры и форму крупных кристаллов. Используя специально приготовленные образцы (шлифованные и травленые), обнаруживают трещины, химическую неоднородность, волокнистость.
Исследование макроструктуры, несмотря на свою простоту, является очень ценным методом изучения материалов.