Главная > КВАНТОВЫЕ ВЫЧИСЛЕНИЯ: ЗА И ПРОТИВ (В. А. Садовничего)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

[1] D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, Proc. R. Soc. Lond., A, 400, 97-117 (1985).
[2] P.Shor. Algorithms for quantum computation: discrete logarithms and factoring, Proc. $35^{\text {th }}$ Ann. Symp. on Found. of Computer Science (IEEE Comp. Soc. Press, Los Alomitos, CA, 1994) 124-134.
[3] D.P.DiVincenzo. Quantum computation. Science 270, 5234, 255-261 (1995).
[4] S.Lloyd. Quantum-mechanical computers. Scientific American 273, 44-50 (Oct. 1995).
[5] A.Ekert and R.Jozsa. Quantum computation and Shor’s factoring algorithm. Rev. of Mod. Physics 68, 3, 733-753 (1996).
[6] D.Deutsch and R.Jozsa. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond., A 439, 553-558 (1992).
[7] D.Simon. On the power of quantum computation. Proc. $35^{\text {th }}$ Ann. Symp. on Found. of Computer Science (IEEE Comp. Soc. Press, Los Alamitos, CA, 1994) 116-123.
[8] L.K.Grover. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 23, 4709-4012 (1997).
[9] W.G.Unruh. Maintaining coherence in quantum computers. Phys. Rev. A 51, 2, 992-997 (1995).
[10] I. L. Chuang, R. Laflamme, P. Shor, W.H.Zurek. Quantum computers, factoring, and decoherence. Science 270, 5242, 1633-1635 (1995).
[11] R.Landauer. Dissipation and Noise Immunity in Computation and Communication. Nature, Vol. 335, 779-784 (1988).
[12] R.Landauer. Is Quantum Mechanics Useful? Phil. Trans. R. Soc. Lond. A, 335, 367-376 (1995).
[13] G. M.Palma, K.-A.Suominen and A.K.Ekert. Quantum Computers and Dissipation. Proc. R. Soc. Lond., A, 452, 567-584 (1996).
[14] C.Monroe, D. M. Meekhof, B.E.King, W. M.Itano, D. J. Wineland. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 25, 4714-4717 (1995).
[15] Q. A.Turchette, C.J.Hood, W.Lange, H. Mabuchi, H.J.Kimble. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 25, 4710-4713 (1995).
[16] S. Lloyd. A potentially realizable quantum computer. Science 261, 5128, 1569-1571 (1993).
[17] N.Gershenfeld and I.L.Chuang. Bulk spin-resonance quantum computation. Science 275, 5298, 350-356 (1997).
[18] D. G. Cory, M. D.Price, A.F.Fahmy, T.F.Havel. Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Physica $\mathrm{D}$, in print; lanl e-print quantph/9709001 (1997).
[19] D.G.Cory, A.F.Fahmy, and T.F.Havel. Ensemble quantum computing by NMR spectroscopy. Proc. Nat. Acad. Sci. 94, 1634-1639 (1997).
[20] R. Cleve, A.Ekert, C. Macchiavello and M.Mosca. Proc. R. Soc. Lond., A, 454, 339-354 (1998); lanl e-print quant-ph/9708016.
[21] C.P.Slichter. Principles of Magnetic Resonance. (Springer, Berlin, 1990).
[22] E. Knill, I. L. Chuang and R. Laflamme. Effective pure states for bulk quantum computation, to appear in Phys. Rev. A, (1998); lanl e-print quant-ph/9706053.
[23] R. R.Ernst, G. Bodenhausen and A. Wokaun. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. (Oxford University Press, Oxford, 1994).
[24] I. L. Chuang, N. Gershenfeld, M. G. Kubinec, D. W. Leung. Bulk quantum computation with nuclear magnetic resonance: Theory and experiment. Proc. R. Soc. Lond., A, 454, 447-467 (1998).
[25] W.S. Warren. The Usefulness of NMR Quantum Computing. Science, 277 1688-1690 (1997).
[26] T.F.Jones, M. Mosca. Implementation of a Quantum Algorithm to Solve Deutsch’s Problem on a Nuclear Magnetic Resonance Quantum Computer. subm. to J. of Chem. Phys. (1998); lanl e-print quantph/9801027.

1
Оглавление
email@scask.ru