Главная > ОБЩИЙ КУРС ФИЗИКИ. T.V,Ч. 1 АТОМНАЯ ФИЗИКА (Д.В.Сивухин)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Теория Бора-важный этап в понимании внутриатомных явлений. Классическая физика, созданная при изучении макроскопических явлений, столкнулась с принципиальными трудностями, когда ее стали применять к атомам, молекулам и вообще к явлениям микромира. Теория Бора подготовила почву для уяснения того важнейшего факта, что для понимания явлений микромира классических понятий и классических законов недостаточно. В области микромира нужны принципиально новые понятия и законы. Здесь первенствующая роль должна принадлежать кванту действия, открытому Планком. Теория Бора послужила мощным стимулом для постановки многих экспериментальных исследований, принесших важные результаты, Даже в тех случаях (а таких случаев было большинство), когда теория была не в состоянии дать количественного объяснения многих явлений, два постулата Бора служили руководящей нитью при классификации и качественной интерпретации этих явлений. На их основе, например, был классифицирован громадный эмпирический материал атомной и молекулярной спектроскопии.

Но двух постулатов Бора, конечно, недостаточно для построения полной теории. Они должны быть дополнены прежде всего правилами квантования, с помощью которых могут быть вычислены уровни энергии атома. Бор предложил правило квантования круговых орбит электронов в одпоэлектронных атомах. Оно выражается формулой (13.6). При получении этой формулы Бор, как он сам признается, исходил из требования подогпать теоретическую формулу для уровней энергии под эмпирически установленную формулу Бальмера для спектральных термов водорода. Несколько позже Зоммерфельд обобщил правило квантования Бора на случай движения электрона по эллиптическим орбитам. Но и после этого правило квантования относилось только к атому с одним электроном. Не удалось распространить правила квантования на многоэлектронные атомы, даже на простейший после водорода атом гелия, состоящий из ядра и двух электронов. От теории, конечно, нельзя требовать, чтобы она давала аналитическое решение задачи трех тел. Такое решение может оказаться невозможным. Но теория должна указать принципиальный метод численного решения с точностью, достаточной для сравнения с экспериментом ${ }^{1}$ ). Этого теория

1) Именно так обстоит дело в небесной механике. Аналитическое решение задачи трех тел получить не удалось. Но в небесной механике разработаны эффективные приближеншые методы численного решения задачи, даюцие необходимую точность. Правда, Зундиан в 1912 г. нашел аналитическое решение в виде рядов. Но для получения численных результатов эти ряды не-

Бора дать не могла. Она тем более не могла дать принципиального решения и более сложного вопроса – образования молекул, даже простейшей молекулы водорода, состоящей из двух протонов и двух электронов.

Теория Бора, даже в простейшем случае одноэлектронных атомов, позволяла вычислять только частоты спектральных линий, но не их интенсивности и поляризацию. Правда, для нахождения интенсивностей и поляризации она пользовалась принципом соответствия. Но принцип соответствия мог быть оправдан только при больших квантовых числах, где вычисления могли быть произведены классически. Теория Бора распространяла результат и на малые квантовые числа, для чего не было никаких оснований. Таким образом, в конце концов интенсивность и поляризация определялись классически.

Но основной принципиальный недостаток теории Бора-в ее непоследовательности. Она принимала существование только стационарных состояний атома или, как говорил сам Бор, стационарных орбит электронов. Это совершенно непонятно с точки зрения классической механики. В то же время к движению электронов в стационарных состояниях она применяла законы классической механики, хотя и считала неприменимой классическую электродинамику (поскольку нет излучения). По шуточному замечанию Г. Брэгга (I862-1942), в теории Бора по понедельникам, средам и пятницам надо применять классические законы, а по вторникам, четвергам и субботам – квантовые. Два постулата Бора, если не пользоваться представлениями об орбитах электронов в атомах, как это делалось нами выше, проверены экспериментально и потому должны считаться правильными. Но сама теория Бора в целом является только промежуточным этапом на пути к более совершенной и последовательной теории. Это лучше других понимал сам Бор, которому принадлежит главная заслуга в осмысливании принципиальных положений квантовой механики, пришедшей на смену теории Бора,

Планк ввел представление о квантовом характере процессов излучения и поглощения света. Эйнштейн распространил квантование света и на его распространение в пространстве, введя представление о фотонах. А теприя теплоемкостей Эйнштейна прямо указывала на то, что введенная Планком постоянная $h$ проявляется не только в световых явлениях, но и в процессах, происходящих в веществе. Дальнейший шаг сделал Бор. Успех

пригодны, так как они сходятся очень медленно. Например, чтобы с помощью рядов Зундмана достигнуть той же точности, которую дают современные астрономнческие ежегодники, надо просуммировать примерно $10^{800000}$ членов Это далеко выходит за пределы возможностей современных и будущих самых больших электронных счетных машин.

теории Бора при вычислении постоянной Ридберга и размеров атома выявил значение постоянной Планка как универсальной фундаментальной величины для описания всех видов материи, а не только для описания корпускулярно-волнового дуализма света. И действительно, постоянная Планка, имеющая размерность действия (т. е. размерность произведения импульса на координату или энергии на время), пронизывает содержание всей новейшей (квантовой) физики.

Categories

1
Оглавление
email@scask.ru