Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. Одним из явлений, подтверждающих гипотезу фотонов, является фотоэлектрический эффект, к рассмотрению которого мы и перейдем. В 1887 г. Генрих Гери ( $1857-1894)$ обнаружил, что освещение ультрафиолетовым светом отрицательного электрода искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между его электродами. Занятый в то время исследованиями электромагнитных волн, предсказанных Максвеллом, Герц не обратил на это явление серьезного внимания. Первые исследования явления принадлежат Хальваксу (1859-1922), Риги (1850-1921) и в особенности А. Г. Столетову (1839-1896). Сущность явления, обнаруженного Герцем, состоит в том, что при освещении ультрафиолетовыми лучами отрицательно заряженного металлического тела оно теряет отрицательный заряд. При освещении такими же лучами положительно заряженного тела потери заряда не наблюдается. Более того, если тело не было заряжено, то при освещении оно заряжается положи тельно до потенциала в несколько вольт. После открытия элек. трона в 1897 г. Дж. Дж. Томсоном (1856-1940) опытами самого Томсона, а также Ленарда (1862-1947) вскоре был найден удельный заряд $e / m$ для частиц, теряемых телами при освещении. Он оказался таким же, как и для частиц катодных лучей. Тем самым было доказано, что при освещении тела теряют электроны. Явление вырывания электронов из вещества при освещении его светом получило название фотоэлектрического эффекта или, короче, фотоэффекта. Различают внешний и внутренний фотоэффект. При внешнем фотоэффекте электроны освобождаются светом из поверхностного слоя вещества и переходят в другую среду, в частности в вакуум. При внутреннем фотоэффекте оптически возбужденные электроны остаются внутри освещаемого тела, не нарушая электрическую нейтральность последнего. Для обоснования гипотезы фотонов основное значение имеет внешний фотоэффект, который преимущественно и рассматривается в этом параграфе. О внутреннем фотоэффекте и о его применениях будет сказано несколько слов в конце этого же параграфа. Электроны, вырванные под действием света, называются фотоэлектронами. Фотоэлектрическими свойствами обладают как металлы, так и диэлектрики, а также полупроводники и электролиты, причем необходимым (но недостаточным) условием фотоэффекта является заметное поглощение используемого света в поверхностном слое освещаемого тела. Фотоэлектрический эффект вызывается не только ультрафиолетовыми лучами. Щелочные металлы — литий, натрий, калий, рубидий, џезий весьма чувствительны к фотоэлектрическому действию и в видимой области спектра. А специальная обработка поверхностей этих и других металлов делает их способными испускать фотоэлектроны даже под действием инфракрасных лучей. зарядки электрометра (вместо электрометра можно взять чувствительный гальванометр) можно определить силу электрического тока в цепи, а с ней и количество фотоэлектронов, достигающих анода в единицу времени. Опыты подобного рода в раниих исследованиях производились в газах. Но их лучше производить в вакууме, так как газ только осложняет явления, происходящие в поверхностном слое металла. Фотоэффект с данного вещества сильно зависит от состояния его поверхности. Для получения однозначных результатов исследование этого явления необходимо пронзводить в хорошем вакууме, предварительно тщательно очистив поверхность исследуемого тела. Перед помещением электродов в прибор материал, служащий катодом, подвергают перегонке в вакууме, а затем наносят тонким слоем на какую-либо подложку. Если при постоянных интенсивности и частоте падаюпего света менять напряжение $V$ между анодом и катодом, то зависимость. фототока $I$ от $V$ представится кривой, схематически изображенной на рис. 2. Она называется характеристикой фотоэлемента, т. е. того прибора, в котором наблюдается фотоэффект. При увеличении напряжения характеристика переходит в горизонтальную прямую, которой соответствует максималь ный ток. Он пазывается током насыщения. Насыщение достигается тогда, когда все электроны, вырванные светом с поверхности катода, попадают на анод. Дальнейшее повышение напряжения не меняет силу фототока: она определяется только количеством ежесекундно вырываемых электронов. Существование тока насыщения экспериментально было установлено А. Г. Столетовым. Им же было доказано на опыте, что ток насыщения строго пропорционален интенсивности падающего света, если только частота его остается постоянной. Топнее, ток насыщения пропорционален интенсивности поглощаемого света. Однако последняя в свою очередь пропорциональна интснсивности падающего света, а потому в формулировку закона и входит интенсивность того же света. Кроме того, закон пропорциональности Столетова строго соблюдается лишь при условии, когда ток насыщения образован только электронами, освобожденными светом с светочувствительной поверхности тела. Для э’ого светочувствительная поверхность должна помещаться в вакууме. В газонаполненных приборах могут наблюдаться заметные отступления от простой пропорциональности. Такие приборы обычно чувствительнее вакуумных, так как в них к току электронов, освобожденных светом со светочувствительной поверхности тела, добавляется еще ток ионизацци газа, наполняющего прибор. Поэтому газонаполненными приборами, если они применяются для измерений, надо пользоваться с осмотрительностью. Однако такое объяснение не согласуется с онытом. Кинетическая энергия колеблющегося электрона зяимствуется от световой волны. Казалось бы, что энергия вылетевшего электрона должна быть тем больше, чем больше интенсивность падающего света. Но опыты Ленарда и многочисленные исследования других ученых показали, что максимальная скорость, с которой электроны вылетают из тела, от интенсивности падающего света совсем не зависит, а определяется только его частотой. (Предполагается, что материал тела и состояние освещаемой поверхности остагтся неизменными.) Другое резкое расхождение с опытом получится, если на основе приведенного объяснения оценить время возникновения фотоэффекта. Действительн, возьмем, например, электрическую лампочку мощностью $P=100$ Вт. Для простоты будем считать ее точечным и изотропно излучающим источником света. По классической волновой теории поток лучистой энергии расіространяется от источника света непрерывно во все стороны. Пусть свет падает кормально на плоский фотокатод из цинка, расположенный на расстоянии $r$ от лампочки. Энергетическая освещенность, создаваемая лампочкой на фотокатоде, будет $P /\left(4 \pi r^{2}\right)$. Работа выхода электрона $A$ из цинка составляет около 3,74 эВ. Ясно, что для выхода электрона из металла энергия, накопленная им при вынужденных колебаниях, должна быть не меньше $A$. Максимальная энергия, которую может получить атом от излучения за время $t$, составляет $\mathscr{E}_{\text {макс }}=$ $=\left(P / 4 \pi r^{2}\right) \sigma t$, где $\sigma$ — поперечное сечение атома. Энергия, переданная электрону за то же время, меньше $\mathscr{E}$ макс. Но она должна быть не меньше $A$, чтобы электрон мог выйти из металла, т. е. $\mathscr{E}_{\text {макс }}>A$, а потому должно быть $t>\left(4 \pi r^{2} / \sigma P\right) A$. Среднее расстояние между атомами цинка найдется по формуле $d=$ $=\left(M / \delta N_{\mathrm{A}}\right)^{1 / 3}$, где $N_{\mathrm{A}}$ — постоянная Авогадро, $M$ — молярная масса, $\delta-$ плотность цинка. Для цинка $M=65$ г/моль, $\delta=$ $=7 \mathrm{r} / \mathrm{cm}^{3}$, а следовательно, $d=2,49 \cdot 10^{-8} \mathrm{cм}$. Сечение $\sigma$ можно оценить по формуле $\sigma \approx d^{2} \approx 6 \cdot 10^{-16} \mathrm{~cm}^{2}$. Если положить еще $r=1 \mathrm{м}$, то получится $t \geqslant 1,25 \mathrm{c}$. Таким образом, по классической волновой теории фотоэффект должен протекать с запаздыванием. Если учесть, что фотоэлементы реагируют на значительно более слабые световые потоки, чем в нашем примере, то и запаздывание фотоэффекта может получиться много больше того, которое мы вычислили. Между тем опыт показывает, что фотоэффект протекает безынерционно, т. е. фототок появляется мгновенно — одновременно с освещением. Именно на такой безынерционности основаны практически все научно-технические применения фотоэффекта. Энергия поглощаемого фотона может затрачиваться на отрыв электрона от атома внутри металла. Оторванный электрон может взаимодействовать с атомом внутри металла, растрачивая энергию на тепло. Максимальной энергией вылетевший электрон будет обладать тогда, когда внутри металла он был свободен, т. е. не связан с атомом, а при вылете наружу не расходовал энергию на тепло. В этом случае кинетическая энергия электрона тратится только на преодоление задерживающих сил, действующих в поверхностном слое металла, т. е. на $p a$ боту выхода. Предположим, что электрон получил кинетическую энергию при столкновении только с одним фотоном. Многофотонные процессы, которые будут рассмотрены в пункте 9, возможны, но при слабых интенсивностях света (линейная оптика) маловероятны. Тогда максимальная кинетическая энергия, которой будет обладать вылетевший электрон, определится формулой где $A$-работа выхода, а $m_{\text {e }}$ — масса покоя электрона. Эта формула впервые была получена Эйнштейном и носит его имя. Прежде чем анализировать формулу Эйнштейна, необходимо выяснить, как может «свободный электрон в металле» поглотить фотон. Не противоречит ли это утверждению, доказанному в конце предыдущего параграфа, согласно которому поглощение фотона свободным электроном несовместимо с законами сохранения энергии и импульса? На самом деле противоречия нет. Противоречие возникает из-за неудачной терминологии. «Свободный электрон в металле» в действительности не свободен. Он как бы заперт в ящике, вблизи стенок которого действует задерживающее поле. Фотон взаимодействует не только с электроном, но происходит взаимодействне обеих этих частиц с металлом в целом. При взаимодействии же трех тел законы сохранения энергии и импульса могут выполняться одновременно. Импульс фотона воспринимается как электроном, так и металлом, энергия же передается только электрону, так как масса металла может считаться бесконечно большой. В самом деле, представим работу выхода в виде $A=h v_{0}$, где $v_{0}$ — положительная постоянная, и запишем формулу (2.1) так: При $v<v_{0}$ правая часть отрицательна. А это невозможно, так как левая часть существенно положительна. Следовательно, при $v<v_{0}$ фотоэффект невозможен. Частота $v_{0}$ и есть низкочастотная граница фотоэффекта. Существование такой границы соверщенно непонятно с волновой точки зрения. Фотоэлектрон, освобожденный светом, может претерпеть столкновение с атомом внутри поверхностного слоя металла. Из-за этого он может замедлиться и даже не выйти наружу. Приложенное электрическое поле способствует ускорению замедлившихся электронов и выходу их из металла. В этом причина, почему сила фототока возрастает с напряжением между катодом и анодом. Для проверки формулы Эйнштейна (2.1) надо измерить максимальную кинетическую энергию фотоэлектрона, которой он обладает по выходе из металла. Такие измерения затруднены контактной разностью потенциалов, весьма чувствительной к поверхностной обработке металла, а потому трудно контролируемой. Для исключения влияния контактной разности потенциалов на вольт-амперной характеристике фотоэлемента отмечают две точки: одну $A$, в которой ток обрацается в нуль задерживающим полем; другую $G$, с которой начинается ток насыщения (рис. 2). Показания вольтметра, соответствующие этим точкам, обозначим через $V_{A}$ и $V_{O}$. Это есть именно показания вольтметра, а не разности потенциалов между анодом и катодом. К последним должна быть добавлена контактная разность потенциалов $V_{c}$ между теми же электродами. Полные разности потенциалов равны $V_{A}+V_{c}$ и $V_{G}+V_{c}$ соответственно. При показаниях вольтметра меньше $V_{A}$ все электроны задерживаются и не достигают анода. Когда вольтметр показывает $V_{A}$, анода начинают достигать электроны с максимальной скоростью $v_{\text {макс. }}$. Приравнивая энергии электрона в точках $A$ и $G$ характеристики, получим где $e$-заряд электрона по абсолютной величине. (Тепловыми скоростями мы пренебрегаем, так как средняя энергия теплового движения $k T$ пренебрежимо мала по сравнению с энергией фотона $h v$.) Когда же вольтметр показывает $V_{G}$, наоборот, даже электроны нулевой скорости начинают достигать анода, поэтому Из последнего уравнения находится контактная разность потенциалов: $V_{c}=-V_{G}$. Первое же уравнение определяет искомую максимальную кинетическую энергию фотоэлектрона: Из уравнения $V_{G}=-V_{c}$ следует, что положение точки $V_{G}$ на вольт-амперной характеристике фотоэлемента зависит только от контактной разности потенциалов, но не зависит от частоты $v$ падающего света. Напротив, положение точки $V_{A}$ меняется с частотой $v$, так как от частоты зависит максимальная энергия $1 / 2 m_{\mathrm{e}} v_{\text {макс }}^{2}$, которой определяется величина $V_{A}+V_{c}$. Іри увеличении частоты характеристики будут сменаться влево, но абсцисса $V_{G}$ будет оставаться неизменной. Если характеристики строить в таком масштабе, чтобы на них ток насыщения всегда изображался ординатами одинаковой величины, то все они будут проходить через одну и ту же точку $G$. В начале пункта 6 было отмечено преимущество сферического конденсаторс неред плоским. Теперь, после изложения идеи метода определения максимальной кинетической энергии фотоэлектрона, можно указать на другое преимущество. В случае плоского конденсатора для попадания фотоэлектронов на анод имеют значение не полные скорости их, а только составляющие, перпендикулярные к поверхности анода. Қасательные составляющие приводят к тому, что характеристика фотоэлемента в точках $A$ и $G$ не пересекает горизонтальные прямые, а подходит к ним асимптотически. Это затрудняет определение положения самих точек $A$ и $G$. В сферическом же конденсаторе с малым внутренним шариком этого не получается, так как все скорости ротоэлектроное практически радиальные, т. е. нормальны к поверхности анода. Точная эксіериментальная проверка формулы Эйнштейна была впервые осуществлена Ричардсоном (1879-1959) и Карлом Комптоном (1887-1954) в 1912 г., а еще более тщательно Милликеном (1868-1953) в 1916 г. Обе работы подтвердили формулу Эйнштейна, хотя и были не совсем свободны от возражений. В наиболее чистых условиях проверка была произведена П. И. Лукирским $(1894-1954)$ и С. С. Прилежаевым в 1926 г. Схема их установки приведена на рис. 3. Прибор представлял собой сферический конденсатор, в котором создавался вакуум, с наружной обкладкой в виде слоя серебра, нанесенного на внутреннюю поверхность сферы $S$ (с диаметром 11 см). Внутренней обкладкой служил шарик $N$ (с диаметром 1,5 см) из металла, с поверхности которого изучался фотоэффект. Чтобы шарик можно было легко заменять, он навинчивался на стержень, связанный со шлифом. Кварцевая изоляция устраняла возможность влияния ползучих зарядов со стекла. Шарик $N$ можно было освещать через отверстие $A$, закрытое кварцевой пластинкой. Свет поступал от ртутной дуги, предварительно пройдя через монохроматор $M$. Был изучен фотоэффект с металлов: Al, Zn, Sn, Ni, Ag. Cd, Pb, Cu, Pt. На рис. 4 привелены характеристики фотоэлемента для цинка $(\lambda=230,2 ; 253,7$ : 313,0 нм для кривых $1,2,3$ соогветственно). Для других металлов характеристики имели аналогичный вид. Все они построены в таком масштабе, в котором ток насыщения условно принят равным 100. При этом условии все кривые для одного и того же металла, но ири различных длинах волн сверху пересекались в одной и той же точке, в которой они переходили в горизонтальные участки. Это находится в согласии с тем, что было сказано выше. Авторы получили для постоянной Планка значение $h=6,58 \cdot 10^{-27}$ эрг $\cdot$ с (если пересчитать их результат на современное значение заряда электрона). с работой выхода $A$. Иными словами, частота $v$ велика по сравнению с частотой $v_{0}$ низкочастотной границы фотоэффекта. В этом случае в уравнении (2.1) величиной $A$ можно пренебречь и написать или где $\mathrm{eV}$ — энергия электрона, выраженная через ускоряющее напряжение. Эта формула справедлива не только для прямого фотоэффекта, в котором энергия световых квантов переходит в кинетическую энергию электронов. Она относится и к обратному фотоэффекту, в котором рентгеновские кванты получаются за счет кинетической энергии электронов, бомбардирующих металл. Именно такой процесс происходит в рентгеновских трубках. В этом случае формула (2.5) определяет максимальную частоту, с которой могут испускаться рентгеновские лучи антикатодом при заданном напряжении на трубке. Существование максимальной граничной частоты подтверждается опытом. Это также говорит в пользу квантовой теории света. При бомбардировке антикатода электроны тормозятся, из-за чего возникает так называемое тормозное рентгеновское излучение. Спектр этого излучения при разложении по длинам волн оказывается сплошным, как и спектр видимого белого света. По этой причине сплошное рентгеновское излучение называется белыл. Его спектральная интенсивность при различных напряжениях на трубке представлена кривыми на рис. 5 (для вольфрамового антикатода). В сторону длинных волн кривая интенсивности спадает полого, асимптотически приближаясь к нулю с увеличением длины волшы. Напротив, со стороны коротких волн кривая интенсивности резко обрывается при некотором значении длины волны, называемой коротковолновой границей сплошного рентгеновского излучения. Эта граница определяется формулой (2.5), из которой следует где напряжение на трубке $V$ измеряется в киловольтах. Коротковолновая граница не зависит от материала антикатода, а определяется только напряжением на трубке. Если увеличивать напряжение выше определенного предела, зависяцего от материала антикатода, то на сплошное излучение накладываются узкие спектральные линии, составляющие так называемое характеристическое излучение антикатода. Но и в этом случае коротковолновая граница рентгеновского спектра существует и определяется прежней формулой (2.6). Существование такой границы является одним из наиболее ярких проявлений корпускулярных свойств рентгеновского Измерение коротковолновой границы рентгеновского излучения дает один из методов точного определения постоянной Планка $h$. Для этого служит формула (2.6). Та же формула применяется для измерения длин волн очень жесткого рентгеновского и гамма-излучения. Максимум на кривой $I_{\lambda}(\lambda)$ для селективного фотоэффекта напоминает резонанспый ма́ксимум при вынуждепных колебаниях гармопического осциллятора. Поэтому можно сказать, что электроны в металле при селективном фотоэффекте ведут себя так, как если бы они обладали собственными частотами, в окрестности которых и наолюдаются максимумы величины $I_{\lambda}(\lambda)$. Другая особенность селективного фотоэффекта, в которой также проявляются волновые свойства света, состоит в том, что интенсивность фототока сильно зависит от поляризации падающего света и от угла падения. Селективный фотоэффект не наблюдается, когда электрический вектор падающей волны перпендикулярен к плоскости падения, а также при нормальном падении света. В обоих случаях в падающем свете есть составляющая электрического поля, касательная к границе металла, но нет нормальной составляющей. Явление происходит так, как если бы селективность фотоэффекта была обусловлена составляющей электрического вектора, нормальной к поверхности металла. Нормальная составляющая более эффективна для вырывания электрона из металла, чем касательная составляющая. В частности, селективность фотоэффекта выражена наиболее резко при скользящем падении поляризованного света, электрический вектор которого лежит в плоскости падения. Для иллюстрации высказанных утверждений на рис. 8 приведена зависимость $I_{\lambda}(\lambda)$ от $\lambda$ для различных поляризаций падающего света, а на рис. 9-зависимость от угла падения. Рисунки отно сятся к тому же сплаву калия и натрия, что и рис. 7. ров появилась возможность экспериментировать с мощными пучками света и наблюдать нелинейные особенности фотоэффекта. Если интенсивность света достаточно велика, то электрон, прежде чем покинуть катод, может претерпеть столкновение не с одним, а $c$ несколькими фотонами (многофотонный процесс). В этом случае вместо уравнения (2.1) следует написать где $N$ — число столкновений электрона с фотонами. Длинноволновая граница фотоэффекта существует попрежнему, но граничная частота определяется выражением $v_{0}=A /(h N)$, т. е. уменьшается в $N$ раз по сравнению с однофотонным эффектом. Наблюдению такого многофотонного нелинейного эффекта длительное время препятствовало нагревание металла при лазерном освещении. Оно сопровождается термоэлектронной эмиссией, для которой, разумеется, длинноволновая граница не существует. Маскирующее влияние термоэлектронной эмиссии удалось устранить почти полностью применением сверхкоротких импульсое Фотоэффект (как внешний, так и внутренний) используется в фотоэлектронных приборах, получивших разнообразные применения в науке и технике (в телевидении, космической технике и т. д.). Нашли широкое применение фотоэлементы с внешним фотоэффектом, т. е. двухэлектродные приборы, в которых падающая на поверхность катода лучистая энергия при внешнем приложенном напряжении между электродами превращается в энергию электрического тока. Электрическое сопротивление полупроводников падает при освещении; это используется для устройства фотосопротивлений. Возникновение фото-эдс при освещении приконтактной области двух различных соприкасающихся полупроводников используется в фотодиодах для непосредственного превращения лучистой энергии в электрическую. Фотоэлектронные умножители (см. т. III, §103), усиливающие первоначальный фототок во много раз, позволяют регистрировать очень слабое излучение, вплоть до отдельных квантов. ЗА д А ч и 1. Определить максимальную скорость фотоэлектронов, вылетающих из никелевого электрода, освещаемого ультрафиолетовым светом с длиной волны $\lambda=220$ нм. Работа выхода электрона из никеля $A=4,84$ эВ . 3. Вычислить длину волны $\lambda$ для длинноволновой границы фотоэффекта на цинке, если работа выхода электрона из цинка $A=3,74$ эВ. Отрицательный знак означает, что при контакте молибдена с материалом анода потенциал молибдена окажется ниже.
|
1 |
Оглавление
|