Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. Рентгеновские лучи в рентгеновских трубках получаются при торможении ускоренных электронов на аноде (в старых трубках — на антикатоде; см. т. III, § 117). Волновые свойства рентгеновских лучей были установлены в 1912 г. Лауэ и его сотрудниками Фридрихом (1833-1968) и Книппингом (18831935), осуществившими дифракцию этих лучей в кристаллах (см. т. IV, § 61). Еще раньше, в 1905 г., Баркла (1877-1944) установил, что если рентгеновские лучи действительно являются волнами, то эти волны должны быть nonepeчными. В опыте Баркла пучок рентгеновских лучей $S$ (рис. 86) рассеивался на теле $A$. Наличие рассеяния обнару. живалось с помощью ионизационной камеры — рентгеновские лучи, попадая в камеру, производили ионизацию воздуха, делая его проводящим. Рассеянное под углом $90^{\circ}$ излучение попадало на тело $B$ и вновь рассеивалось. Оказалось, что интенсивность вновь рассеянного излучения в направлении $B C$, перпендикулярном к плоскости $S A B$, равна нулю, тогда как в других направлениях, в частности в направлении $B D$, антипараллельном $S A$, рассеяние происходило. На основании этого Баркла и заключил, что рентгеновские волны, если рентгеновское излучение действительно состоит из них, должны быть поперечными. В самом деле, если волны поперечны, то электрический вектор в падающем луче $S A$ и возбужденные им колебания электронов в теле $A$ можно разложить по направлениям $A B$ и $B C$. Первые колебания, в направлении $A B$, излучения не дадут, так как колеблющийся электрон не излучает в направлении его колебаний. $К$ телу $B$ дойдет только волна с электрическим вектором, параллельным $B C$. Она возбудит колебания электронов в том же направлении. Следовательно, излучения в направлении $B C$ не возникнет. Разумеется, рентгеновские лучи в опытах Баркла должны были обладать достаточной жесткостью, чтобы на своем пути в воздухе не испытывать заметного поглощения. Для этого напряжение на трубке должно быть достаточно высоким. По той же причине тела $A$ и $B$ делались из материала с малым атомным номером $Z$ (уголь в опытах Баркла). Иначе при высоких напряжениях на трубке в случае больших $Z$ получилось бы собственное характеристическое излучение (см. ниже) и притом значительной интенсивности. Уголь, парафин и пр. дают слабое и мягкое собственное излучение, поглощающееся в воздухе на пути уже в несколько сантиметров, а потому не мешающее постановке опыта. Тормозное излучение дает сплошной спектр. По аналогии с белым светом его называют также белым рентгеновским излучением. В сторону длинных волн интенсивность тормозного излучения спадает полого и асимптотически стремится к нулю. Со стороны коротких волн сплошной спектр обрывается резко (см. рис. 5). Как уже подробно указывалось в § 2, такая особенность сплошного рентгеновского излучения объясняется его квантовой природой. Коротковолновая граница сплошного рентгеновского спектра определяется формулой (2.6). Она совершенно не зависит от материала анода (антикатода), а определяется только напряжением на трубке. Вообще, относительное распределение энергии по длинам волн в спектре тормозного рентгеновского излучения от материала анода не зависит. Последний влияет только на интегральную интенсивность излучения. Характеристическое излучение, напротив, имеет линейчатый спектр, т. е. состоит из закономерно расположенных достаточно узких спектральных линий. Их длины волн зависят исключительно от материала анода. В этом отношении характеристическое излучение напоминает линейчатый спектр газов в оптической сбласти. Электронная бомбардировка возбуждает как сплошное, так и характеристическое излучение, тогда как бомбардировка $\alpha$-частицами или протонами возбуждает только характеристическое излучение. Рентгеновские лучи, испускаемые веществом при действии других рентгеновских лучей, состоят частично из рассеянного первичного пучка, частично из характеристического излучения самого вещества. Характеристическое излучение появляется только после того, как напряжение на трубке начинает превосходить некоторое определенное значение, зависящее лишь от материала анода. Поскольку рентгеновское излученне коротковолновое, разность энергий в начальном и конечном состояниях атома очень велика и в случае тяжелых элементов превосходит в тысячи, десятки и сотни тысяч раз соответствующую разность в оптической области спектра. Это указывает на то, что квантовые переходы совершаются внутренмими, а не наружными (валентными) электронами атома. Но для того, чтобы такие переходы были возможны, необходимо, чтобы внутри электронной оболочки атома были свободныіе места, не заполненные электронами, на которые могут переходить электроны из других квантовых состояний атома. Такие свободные места образуются при воздействии на атом быстрых электронов, фотонов высоких энергий или других быстрых частиц. Допустим, например, что с наиболее глубокого слоя $K$ атома удален электрон. В результате этого энергия атома возрастает на энергию ионизации из $K$-слоя. Обозначим через $\mathscr{E}_{1}$ энергию атома после такого удаления электрона из $К$-слоя наружу. На освободившееся место перейдет электрон из соседнего $L$-слоя. $K$-слой окажется заполненным, а в $L$-слое не будет доставать одного электрона. Иными словами, получится атом, у которого из слоя $L$ удален один электрон. Его энергия $\mathscr{E}_{2}$ меньше исходной энергии $\mathscr{E}_{1}$. Если в результате излучится рентгеновский квант, то его частота определится соотношением (48.1). На освободившееся место в слое $L$ перейдет электрон из слоя $M$ с излучением рентгеновского кванта более низкой частоты. То же произойдет с электроном из слоя $N$, и т. д. Конечно, переходы могут происходить не только между соседними слоями, но, например, между слоями $M$ и $K, N$ и $K$ и т. д. Они возбуждают более жесткое излучение, чем переходы $L \rightarrow K$. В результате всех этих процессов возникнет весь спектр рентгеновского характеристического излучения атома. Итак, частота линии характеристического рентгеновского излучения определяется разностью энергий энергетических уровней атома, найденной в предположении, что из каждого из них удален один электрон. При таком удалении атом переходнт в возбужденное состояние — его энергия увеличивается на соответствующую энергию ионизации. Последняя тем больше, чем глубже лежит уровень невозбужденного атома. Из изложенного ясно, почему при рассмотрении рентгеновского излучения пользуются схемой уровней возбужденного атома, полученной в предположении, что с рассматриваемого уровня удален один электрон, тогда как число электронов на всех остальных уровнях остается неизменным. Из сказанного выше также следует, что схема уровней так возбужденного атома является обраценной по отношению к схеме энергетических уровней невозбужденного атома. Это значит, что в обращенной схеме энергетический уровень расположен тем выше, чем глубже он лежал до удаления с него электрона. Обращенная схема энергетических уровней атома приведена на рис. 88. Электронные слои невозбужденного атома, соответствующие главным квантовым числам $n=1,2,3,4, \ldots$, как известно, обозначаются соответственно через $K, L, M, \ldots$ Такие же обозначения применяются и к атому, возбужденному в указанном выше смысле. Точно так же к возбужденному атому применяют спектроскопические обозначения типа $2^{2} S_{1 / 2}, 2^{2} P_{1 / 2}, \ldots$ Целесообразность этого мотивируется тем, что внутренние оболочки атома замкнуты; их момент количества движения равен нулю, а при удалении электрона уносимый им момент количества движения передается с противоположным знаком электроннфй оболочке, с которой он был удален. В отсутствие магнитного поля энергия не может зависеть от магнитного квантового числа. Она практически зависит только от квантовых чисел $n$ и $j$. Слой $K$ состоит из одного энергетического уровня $1^{2} S_{1 / 2}(n=1, l=\theta, j=1 / 2)$. Слой $L(n=2)$ распадается на три подслоя, обозначаемые через $L_{I}, L_{I I}, L_{I I I}$. Подслой $L_{l}$ состоит из одной $2 S$-оболочки. Два остальных подслоя представляют $2 P$-оболочку, расщепляющуюся на две подоболочки $2^{2} P_{1 / 2}$ и $2^{2} P_{3 / 2}$. Их энергии различаются из-за спин-орбитального взаимодействия. Аналогично слой $M$ ( $n=3$ ) состоит из пяти подслоев, слой $N(n=4)$ — из семи подслоев, обозначенных на рис. 88 , и т. д. Все переходы, удовлетворяющие этим правилам отбора, изображены стрелками на рис. 88. Стрелки означают переходы воз. бужденного атома с высших энергетических уровней на болеє низкие, или, что то же самое, переходы дырки с уровня на уровень. В целях сокращения мы ограничились наличием в атоме топько слоев $K, L, M, N$. Рисунок нетрудно дополить переходами на подуровни слоев $O(n=5)$ и $P(n=6)$, если таковые имеются. Характеристический спектр рентгеновского излучения состоит из серий линий, которые обозначаются буквами $K, L, M, N, O$. Серия $K$ возникает при переходах возбужденного атома с уровня $K$ на лежащие ниже подуровни слоев $L, M, N, \ldots$; серия $L-$ при аналогиных переходах с подуровней слоя $L$; серия $M$ — при переходах с подуровней слоя $M$ и т. д. Қак видно из рисупка, линии серии $K$ имеот дублетную структуру. Компоненты дублетов обозначаются соответственно через $\alpha_{1}, \alpha_{2} ; \beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}$, как видно из рис. 88. Серии $L, M, N$ имеют более сложную мультиплетную структуру. Для линий этих мультиплетов применяются также обозначения греческими буквами с индексами. Буква $\alpha$ указывает, что переход совершился с ближайшего слоя, буква $\beta$-со следующего после ближайшего и т. д. Цифровые ин дексы при буквах $\alpha, \beta, \gamma$ нумеруют линии в порядке убывания длин волн. Из приведенного объяснения возникновения характеристического рентгеновского излучения следует, что при возбуждении наиболее глубоко лежащего слоя $K$ возникает не только серия $K$, но и весь рентгеновский спектр. Вообще, при возбуждении какой-либо серии или линии рентгеновского излучения появляются и все серии и линии рентгеновского излучения с бо́льшими длинами волн. При освобождении электрона из какой-либо внутренней оболочки электрон за пределами атома может обладать каким угодно запасом кинетической энергии. В этом случае его энергия в конечном состоянии не квантуется. При переходе из этого неквантованного состояния на одно из свободных мест в оболочкая атома возникает сплошное рентгеновское излучение. ных элементов, полученная Мозли. Спектры различных элементов расположены относительно друг друга так, что расстояние каждой линии от левого края рисунка приблизнтельно пропорционально длине волны этой линии. Сами элементы расположены в порядке возрастания атомных номеров от кальция $(Z=$ Исследования Мозли впервые экспериментально показали, что основной величиной, определяющей место элемента в периодической таблице, является не атомная масса, а атомный номер элемента. Вместе с тем характеристические рентгеновские спектры позволяют однозначно определять атомные номера элементов и таким образом судить, заполнены ли в периодической таблице все места или должны существовать еще не открытые элементы. Уже сам Мозли оставил место под номером 43 для неизвестного в то время элемента, полученного позднее искусственно и названного технецием. До исследований Мозли не было выяснено, какой из элементов — кобальт с атомной массой 58,933 или никель с атомной массой 58,71 — надо поставить раньше в периодической таблице. Из рис. 89 ясно видно, что кобальт надо поставить между железом и никелем, хотя его атомная масса и больше, чем у никеля. Участок периодической системы от $Z=58$ до $Z=71$ включительно занят элементами редких земель. Их химические свойства настолько близки, а атомные массы были известны настолько недостоверно, что правильность расположения этих элементов в периодической системе вызывала большие сомнения. Изучение рентеновских спектров с использованием закона Мозли (см. ниже) устранило всякие сомнения. Оно показало, что ог водорода до урана включительно должно существовать ровно 92 химических элемента. Из изложенного выше о происхождении характеристических рентгеновских лучей следует, что длины волн таких лучей зависят исключительно от внутренней структуры электронных оболочек атома. Это есть атомное свойство элемента. Поэтому в сплавах и химических соединениях каждый элемент дает такой же характеристический спектр, какой получился бы в отсутствие других элементов. Это ясно проявляется на рис. 89. Спектр латуни получается простым наложением спектров меди и циика, а в спектре кобальта отчетливо проявилось его загрязнение железом и никелем. где $M$ и $a$-постоянные. Та же формула, но с другими численными значениями $M$ и $a$, справедлива и для $L$-серии, а также для последующих серий $M, N, O$. Эта эмпирическая формула называется законом Мозли. Она и определяет смещение характеристических рентгеновских спектров при переходе от одного элемента к следующему. Последующие более точные измерения обнаружили некоторые отступления от простой линейной зависимости (48.3). Впрочем, эти отступления для $K$ — и $L$-серий не являются сколько-нибудь значительными, а становятся заметными лишь для $M$-, $N$ — и $O$-серий. Строгое доказательство и установление точности закона Мозли дать невозможно, так как этот вопрос сводится к проблеме многих тел. Можно дать лишь грубую интернретацию закона Мозли, сведя проблему многих тел к одноэлектронной задаче. Это приводит к вполне удовлетворительным результатам, в особенности для $K$ — и $L$-серий, а главное — устанавливает физический смысл постоянных, входящих в формулу (48.3). Пусть в слое $K$, состоящем из двух электронов, образовалась дырка, т. е. один электрон из этого слоя был удален за пределы атома. Пусть эта дырка заполняется электроном из слоя $L$, в результате чего произойдет излучение $K_{\alpha \text {-линии. Поведение }}$ этого электрона и будет интересовать нас в дальнейнем, пока не произойдет заполнение дырки в слое $K$. Можно считать, что на этот электрон все внешние электропы не дейстьуют, так как они как бы образуют внешию оболочку со сқерически распределенным зарядом в ней. Электрическое ноле, действующее на рассматриваемый электрон, создается зарядом ядра н другим электроном, оставшимся в $K$-слое. Обе эти частицы можно заменить одной — ядром с «эффективным» зарядом $(Z-1) e$ : другой электрон К-слоя как бы экранирует поле ядра атома. Такое же рассуждение, хотя и менее четкое, применимо и в том случае, когда образовалась дырка в слое $L$, заполняемая в дальнейшем одним из электронов слоя $M$ с излученисм $L_{\alpha}$-линии. В этом случае по-прежнему надо интересоваться поведением такого электрона, пока он не заполнит дырку в слое $L$ : Teперь экранирование производится сначала двумя электронами слоя $K$ и семью электронами слоя $L$. Однако в дальнейшем, пока рассматриваемый электрон не заполнил дырку в слое $L$, экранирующее действие некоторых электронов слоя $L$ постепенно выпадает. Можно ириближенно принять, что в экранирующем действии принимает участие как бы половина из оставшихся семи электронов из слоя $L$. Это значит, что эффективный заряд ядра можно считать равным $(Z-a)$ e, где постояниа а назызается постоянной экранирования. Можно ожидать, что для $L_{\alpha}$-линии $a \approx 5,5$, что не так пнохо согласуется с тем, что дает опыт. Впрочем, на приведенное обоснование значения $a \approx 5,5$ следует смотреть как на грубую оценку. В частности, в наших рассуждениях не учтено, что уровень $L$ состоит из трех подуровней. Точные значения постоянных экранирования следует определять экспериментально. В обоих случаях задача свелась к одноэлектронной, подобно тому, как это имело место при объяснении спектральных серий щелочных металлов. Частоты излучаемых линий будут определяться формулой где $R$ — постоянная Ридберга (см. §13). Отсюда и получается формула (48.3), так как для рассматриваемой линии квантовые числа $n_{1}$ и $n_{2}$ фиксированы. Для $K_{\alpha-л и н и и ~} n_{1}=1, n_{2}=2$, а $a=1$, как это было обосновано выше. Поэтому Для $L_{\alpha}$-линии $n_{1}=2, n_{2}=3$, так что Поглощение рентгеновских лучей веществом совершенно не зависит от его оптических свойств. Например, белое прозрачное свинцовое стекло толщиной в несколько миллиметров практически полностью поглощает рентгеновские лучи, а потому и применяется для защиты персонала, обслуживающего рентгеновские установки. Тонкий же лист алюминия, абсолютно непрозрачный для видимого света, хорошо пропускает рентгеновские лучи; для рептеновских лучей, получаемых в технических рентreновскиз трубках (при папряжениях 100 кВ), он почти совершенно прозрачен. Количественное различие в рассеянии видимого света и рентгеновского излучения можно иллюстрировать следующим примером. Параллельный пучок видимого света вследствие молекулярного рассеяния ослабевает в $е$ раз в слое совершенно чистой воды толщиной $\approx 1$ км, тогда как рентгеновский луч испытывает такое же относительное ослабление всего на расстоянии $\approx 5 \mathrm{~cm}$. Во-вторых, ослабление пучка рентгеновских лучей происходит из-за истинного поглощения или абсорбции, когда часть энергии пучка в конце концов переходит в тепло. Если параллельный пучок рентгеновских лучей монохроматичен ( $\lambda=$ const), то ослабление его интенсивности $I$ на отрезке $d x$ однородного вещества определяется соотношением $d I=$ $=-\mu I d x$, где постоянная $\mu$ называется кояффициентом ослабления рентгеновских лучей. Отсюда следует где $\tau$ называется коэффициентом истинного поглощения, а $\sigma$-коэффициентом рассеяния рентгеновских лучей. Все коэффициенты $\mu, \sigma, \tau$ пропорциональны плотности вещества $\rho$, а потому удобнее пользоваться так называемыми массовыми коэффициентами, т. е. величинами Введя $\mu_{m}$ в формулу (48.7), запишем ее в виде Если $S$ — площадь поперечного сечения пучка, то величина $S \rho x$ означает массу вещества, проходимого рентгеновским пучком на расстоянии $x$. Следовательно, $\rho x$ есть масса вещества, проходимого пучком на расстоянии $x$, если площадь поперечного сечения пучка равна единице. В теоретических расчетах еще удобнее пользоваться так называемыми атомными коэффициентами: где $m$ — масса атома, равная $m=A / N_{\mathrm{A}}, A$ — масса моля, $N_{\mathrm{A}}$ постоянная Авогадро. Эти коэффициенты имеют размерность площади, а потому могут быть истолкованы как поперечные сечения атома по отношению к ослаблению, поглощению и рассеянию рентгеновских лучей. Например, $\mu_{a}$ характеризует ослабление интенсивности рентгеновского пучка в слое, содержащем один атом на единице площади поперечного сечения пучка. Если в формулах (48.11) $m$ означает массу не атома, а молекулы, то величины, определяемые этими формулами, следует назвать молекулярными коэффициентами. где постоянная $C$ испытывает всякий раз скачкообразное уменьшение при переходе через край поглощения. Из формулы (48.12), конечно, следует где $C=C N_{\mathrm{A}}$ — новая скачкообразно меняющаяся постоянная. Особенность поглощения рентгеновских лучей состоит в том, что оно является чисто атомным свойством. Молекулярный коэффициент поглощения аддитивно складывается из атомных коэффициентов элементов, входящих в состав молекулы. Пользуясь этим, молекулярные коэффициенты поглощения бесчисленного множества химических соединений можно вычислить, зная атомные коэффициенты поглощения элементов. Далее, как видно из формулы (48.12), атомные коэффициенты поглощения быстро возрастают с увеличением порядкового номера элемента — пропорционально $Z^{4}$. На этих особенностях поглощения рентгеновских лучей основано их применение для целей просвечивания (см. задачу 1 к этому параграфу). Фотографируя в камере Вильсона фотоэлектроны, освобождаемые рентгеновскими лучами из атомов тяжелых инертных газов (например, криптона), Оже обнаружил, что в некоторых случаях в одной и той же точке берут начало два электронных следа. Один электрон образуется в результате обычной фотоионизации на $K$-слое, другой — вследствие внутреннего перераспределения энергии возбужденного атома, т. е. вследствие эффекта Оже. Электроны Оже всегда уносят значительную долю энергии возбужденного атома. Особенно сильно эффект Оже проявляется в тех случаях, когда переходы с излученчем фотонов запрещены (например, в 0 — 0 -переходах). ЗА д А ч и 1. Сравнить коэффициенты поглощения рентгеновских лучей для костей и тканей человеческого тсла. Вещество кости в основном составляет фосфорнокислый кальций $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Поглощение ткани обусловлено главным образом входящей в нее водой $\mathrm{H}_{2} \mathrm{O}$. Решение. На основании формулы (48.12) с учетом значений порядковых номеров элементов получим Для определения отношения массовых коэффициентов поглощения, согласно (48.13), надо учесть отношение молекулярных масс рассматривасмых химических соединений. Для $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad A=3 \cdot 40+2 \cdot 30+8 \cdot 10=-308$; для $\mathrm{H}_{2} \mathrm{O}$ $A=2 \cdot 1+16=18$. Поэтому Ответ. Не может, так как при переходе электрона из наружных оболочек в рассматриваемую дырку энергия атома не уменьшается, а увеличивается.
|
1 |
Оглавление
|