Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Как мы уже видели в предыдущих главах, в нашем распоряжении имеются, вообще говоря, два метода доказательства бифуркационных теорем. Первый — это исходный метод Хопфа, а второй — использование техники инвариантного многообразия для сведения задачи к конечномерному (часто двумерному) случаю. Для уравнений с частными производными, таких, как уравнения Навье -.Стокса (см. гл. 1), теоремы в том виде, как они были сформулированы Хопфом (см. гл. 5) или Рюэлем и Такенсом (см. гл. 3,4 ) неприменимы, о чем уже говорилось. Трудность здесь состоит в том, что векторные поля, порождающие потоки, обычно негладкие функции на любом разумно выбранном банаховом пространстве. И все же метод Хопфа может быть использован для уравнений с частными производными при условии, что уравнения имеют определенный «параболический» тип. Это было сделано Юдовичем [11], Иоссом [3], Джозефом и Сэттинджером [1] и другими ${ }^{1}$ ). В частности, эти методы применимы куравнениям Навье — Стокса. Полученный здесь результат состоит в том, что при выполнении спектральных условий теоремы Хопфа периодическое решение действительно рождается и, более того, применим анализ устойчивости, данный ранее. Главное предположение, необходимое для этого метода это аналитичность решения по $t$. Здесь мы хотим кратко остановиться на другом методе получения подобных результатов. Фактически предыдущие разделы были написаны таким образом, чтобы сделать этот метод совершенно ясным: вместо использования гладкости порождающего векторного поля или $t$-аналитичности решения мы использовали гладкость потока $F_{t}^{\mu}$. Нам кажется, что это дает технические преимущества при рассмотрении следующей бифуркации рождения инвариантного тора. Аналитичности по $t$ недостаточно для работы с отображением Пуанкаре периодического решения (см. гл. 2B). Полезно заметить, что существуют общие результаты, применимые к конкретным эволюционным уравнениям с частными производными, которые позволяют определять гладкость их потоков на соответствующим образом выбранных банаховых пространствах. Эти результаты получены в работе Дорро и Марсдена [1]. Для удобства читателя в главе 8A мы приведем нужные для дальнейшего части этой работы, а также некоторые полезные теоретические сведения по этому вопросу. Мы сначала сформулируем результаты в общем виде, а затем (в гл. 9) опишем, как эту процедуру можно эффективно применить для уравнений Навье — Стокса. Одновременно мы установим основные результаты, касающиеся существования, единственности и гладкости для уравнений Навье — Стокса, используя метод Като — Фуджиты [1] и результаты Дорро и Марсдена [1] (гл. 8A). Следует отметить, что и для уравнений с частными производными, отличных от уравнений Навье — Стокса, бифуркационные задачи встречаются весьма часто; например, при изучении химических реакций (см. Коппель и Ховард.[1,2, 5]) и в динамике популяций (см. гл. 10). Задачи из других областей, таких, как теория электрических цепей и теория упругости, вероятно, того же типа (см. Стерн [1], Зиглер [1] и Кнопс и Уилкс [1]). Похоже, что настоящая сила методов теории бифуркаций только начинает реализовываться в приложениях. Общая схема и основные предположения где $X_{\mu}$ — зависящий от параметра $\mu$ плотно определенный нелинейный оператор ${ }^{1}$ ) на подходящем функциональном пространстве $E$ (банаховом пространстве). Например, $X_{\mu}$ может быть оператором Навье — Стокса, а $\mu$ — числом Рейнольдса (см. гл. 1). Предполагается, что эта система определяет единственное локальное решение $x(t)$ и, следовательно, полупоток $F_{t}$, который при фиксированном $\mu$ и $t \geqslant 0$ отображает $x(0)$ в $x(t)$. Бифуркационные теоремы для уравнений с частными производными 197 Сделаем два важных предположения относительно потока. Первое из них таково. Это как раз то, что мы будем понимать под гладкой полугруппой. Қонечно, мы не требуем гладкости по $t$, так как, вообще говоря, образующая $X_{\mu}$ для $F_{t}$ будет только плотно определенным, а не гладким отображением $E$ в $E$. Однако, как разъясняется в главе $8 \mathrm{~A}$, не совсем глупо ожидать гладкости по $\mu$ и $t$ при $t>0$ (что является нелинейным аналогом «аналитических полугрупп» и имеет место для уравнений «параболического типа»). Это нам потребуется ниже. В гл. 9 мы опишем вкратце, как можно проверить это предположение для уравнений Навье — Стокса, используя общий критерий, применимый к широкому классу систем (для систем, подобных нелинейным волновым уравнениям, это хорошо известно из работ Сегала [1] и других). Это просто означает, что наша теорема существования для $F_{t}$ достаточно сильна, чтобы гарантировать следующее: орбита может быть не определена только тогда, когда она за конечное время уходит на бесконечность. Такое предположение в большинстве случаев выполняется (в частности, для уравнений Навье — Стокса). Предположим, что $F_{t}$ имеет неподвижную точку, которой можно считать точку $O \in E$, т. е. $F_{t}(0)=0$ при всех $t \geqslant 0$. Обозначим через $D F_{t}$ производную Фреше отображения $F_{t}$ при фиксированном $t$; тогда ясно, что $G_{t}=D F_{t}(0)$ является линейной полугруппой на $E$. Ее производящий оператор, который формально равен $D X(0)$, является поэтому плотно определенным замкнутым линейным оператором, который определяет линеаризованное уравнение ${ }^{1}$ ). Нижеследующее предположение касается спектра линейной полугруппы $G_{t}$, который при соответствующих условиях (Хилле и Филлипс [1]) является экспоненциалом спектра $D X(0)$ (сравните с гл. 2A). При этих условиях имеет место рождение периодических орбит. Они будут устойчивы при следующем условии. Эта процедура может быть применена прямо к векторному полю $X$, поскольку вычисления конечномерны; неограниченность образующей $X$ не вносит дополнительных трудностей. Сформулируем основной результат. Особо отметим, что вблизи периодических орбит решения определены для всех $t \geqslant 0$. Это важный критерий глобального существования решений (см. также Сэттинджер $[1,2])$. Конечно, можно обобщить этот результат: например, рассмотреть случай, когда система зависит от нескольких параметров и несколько собственных значений пересекают окружность, или случай системы с симметрией, рассмотренный ранее (гл. 7). Таким же образом можно доказать рождение инвариантного тора из периодической орбиты. Доказательство теоремы (кабросок). Как показано вгл. 2, теорему о центральном многообразии можно применять к потокам. Таким образом, для гладкого потока $F_{t}(x, \mu)=$ $=\left(F_{t}^{\mu}(x), \mu\right)$ мы можем получить существование локально инвариантного центрального многообразия $C$; это трехмерное многообразие, касающееся оси $\mu$ и двумерного собственного направления оператора $G_{t}^{0}(0)$. (Инвариантное многообразие устойчиво и содержит всю локальную рекуррентность, но $F_{t}$ пока еще только локальный поток на этом многообразии.) Оказывается, существует замечательное свойство гладких полупотоков, которое доказано в гл. 8A (отсылаем к Бохнеру и Монтгомери [1], см. Чернов и Марсден [2]): оно состоит в том, что полупоток $F_{t}$ на конечномерном многообразии $C$ порождается $C^{\infty}$-векторным полем, т. е. исходное поле $X$, ограниченное на $C$, является $C^{\infty}$-векторным полем (oпределенным во всех точках). После этого все немедленно сводится к теореме Хопфа в размерности 2, и за доказательством можно отослать к гл. 3 . Здесь все может быть проделано точно так же, как в гл. 6. Однако, как объяснено в гл. $2 \mathrm{~B}$, необходимо знать, что $F_{t}^{\mu}(x)$ гладко зависит от $t, \mu, x$ для $t>0$. Тогда отображение Пуанкаре для замкнутой орбиты будет корректно определенным и гладким, и после сведения к конечной размерности с помощью теоремы о центральном многообразий, как в гл. 6, оно будет диффеоморфизмом в силу следствия 8А.9. Поэтому мы действительно можем воспользоваться теми же самыми бифуркационными теоремами, что и в гл. 6, для анализа рождения тора. Для проверки предположений гладкости можно использовать результаты гл. 8А и 9.
|
1 |
Оглавление
|