Главная > Фейнмановские лекции по физике. Т.7. Физика сплошных сред
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 5. Симметрии в двух измерениях

Теперь мне хотелось бы обсудить некоторые свойства кристаллов с точки зрения их внутренних симметрий. Основное свойство кристалла состоит в том, что если вы сдвинетесь от одного атома на один период решетки к соответствующему атому, то попадете в точно такое же окружение. Это фундаментальное утверждение. Но если бы вы сами были атомом, то могли бы заметить другое передвижение, которое привело бы вас в точно такое же окружение, т. е. в другую возможную «симметрию». На фиг. 30.7,а показан еще один возможный узор обоев (хотя вы, наверно, такого никогда не видали). Предположим, что мы сравниваем окружения в точках  и . Вы могли бы сперва подумать, что они одинаковы  Не  совсем. Точки  и  эквивалентны , но окружение  подобно , только если все рядом обращать как будто в зеркале.

13.gif

Фиг. 30.7. Узор обоев с высокой симметрией.

В этом узоре имеются еще и другие виды «эквивалентных» точек. Так, точки  и  обладают «одинаковыми» окружениями, за тем исключением, что одно повернуто на 90° по отношению к другому. Узор особенный. Вращение на 90°, проделанное сколько угодно раз вокруг такой вершины, как , снова дает тот же узор. Кристалл с такой структурой имел бы на поверхности прямые углы, но внутри он устроен сложнее, чем простой куб.

Теперь, когда мы описали ряд частных случаев, попытаемся вывести все возможные типы симметрии, какие может иметь кристалл. Прежде всего посмотрим, что получается в плоскости. Плоская решетка может быть определена с помощью двух так называемых основных векторов, которые идут от одной точки решетки к двум ближайшим эквивалентным точкам. Два вектора 1 и 2 суть основные векторы решетки на фиг. 30.1. Два вектора  и  на фиг. 30.7,а - основные векторы для изображенного там узора. Мы могли бы, конечно, с тем же успехом заменить  на  или  на . Раз  и  одинаковы по величине и перпендикулярны друг другу, то вращение на 90° переводит  в  и  в  и снова дает ту же решетку.

Итак, мы видим, что существуют решетки, обладающие «четырехсторонней» симметрией. А раньше мы описали плотную упаковку, основанную на шестиугольнике и обладающую шестисторонней симметрией. Вращение набора кружков на фиг. 30.5,а на угол 60° вокруг центра любого шарика переводит рисунок сам в себя.

Какие виды вращательной симметрии существуют еще? Может ли быть, например, вращательная симметрия пятого или восьмого порядка? Легко понять, что они невозможны. Единственная симметрия, связанная с фигурой, имеющей более четырех сторон, есть симметрия шестого порядка. Прежде всего покажем, что симметрия более чем шестого порядка невозможна. Попытаемся вообразить решетку с двумя равными основными векторами, образующими угол менее 60° (фиг. 30.8,а). Мы должны предположить, что точки  и  эквивалентны  и что  и  - наиболее короткие векторы, проведенные из  до эквивалентных соседей. Но это, безусловно, неверно, потому что расстояние между  и  короче, чем от любого из них до . Должна существовать соседняя точка , эквивалентная , которая ближе к , чем к  или . Мы должны были бы выбрать  в качестве одного из основных векторов. Поэтому угол между основными векторами должен быть равен 60° или еще больше. Октагональная симметрия невозможна.

14.gif

Фиг. 30.8. Симметрия вращения выше шестого порядка невозможна (а); симметрия вращения пятого порядка невозможна (б).

А как быть с пятикратной симметрией? Если мы предположим, что основные векторы  и  имеют одинаковую длину и образуют угол  (фиг. 30.8,б), то должна существовать эквивалентная точка решетки в  под 72° к линии . Но вектор  от  к  тогда короче , и  уже не основной вектор. Пятикратной симметрии быть не может. Единственные возможности, не приводящие к подобным трудностям, это , 90 или 120°. Очевидно, допустимы также нуль и 180°. Можно еще так выразить полученный нами результат: рисунок может не меняться при повороте на полный оборот (ничего не изменяется), полоборота, одну треть, одну четверть или одну шестую оборота. И этим исчерпываются все возможные вращательные симметрии на плоскости - всего их пять. Если , то мы говорим об «-кратной» симметрии, или симметрии -го порядка. Мы говорим, что узор, для которого  равно 4 или 6, обладает более «высокой симметрией», чем узор с , равным 1 или 2.

Вернемся к фиг. 30.7,а. Мы видим, что узор там обладает четырехкратной вращательной симметрией. На фиг. 30.7,б мы нарисовали другое расположение, которое обладает теми же свойствами симметрии, что и фиг. 30.7,а. Маленькие фигурки, похожие на запятые, - это асимметричные объекты, которые служат для определения симметрии изображения внутри каждого квадратика. Заметьте, что запятые в соседних квадратиках перевернуты попеременно, так что элементарная ячейка больше одного квадратика. Если бы запятых не было, рисунок по-прежнему обладал бы четырехкратной симметрией, но элементарная ячейка была бы меньше. Посмотрим внимательно на фиг. 30.7; мы обнаружим, что они обладают еще и другими типами симметрии. Так, отражение относительно каждой пунктирной линии  воспроизводит рисунок без изменений. Но это еще не все. У них есть еще один тип симметрии. Если отразить рисунок относительно линии , а затем сдвинуть на один квадратик вправо (или влево), то снова получится первоначальный рисунок. Линия  называется линией скольжения.

Этим исчерпываются все типы симметрии в пространстве двух измерений. Есть еще одна пространственная операция симметрии, которая на плоскости эквивалентна вращению на 180°, однако в трехмерном пространстве она не сводится к этому вращению, а есть совсем другая операция. Я говорю об инверсии. Под инверсией мы подразумеваем такую операцию, когда любая точка, отвечающая вектору смещения из начала координат  (например, точка  на фиг. 30.9,б), переносится в точку .

16.gif

Фиг. 30.9. Операция симметрии, называемая инверсией.

а - рисунок меняется; б - рисунок не меняется при преобразовании ; в - в трех измерениях рисунок не симметричен после операции инверсии; г - рисунок симметричен в трех измерениях.

Инверсия рисунка а на фиг. 30.9 дает новый рисунок, а инверсия рисунка б приводит к такому же рисунку. На двумерном узоре (вы можете это видеть) инверсия рисунка б в точке  эквивалентна повороту на 180° вокруг той же самой точки. Предположим, однако, что мы сделали узор на фиг. 30.9,б трехмерным, вообразив на маленьких шестерках и девятках «стрелочки», смотрящие из страницы кверху. В результате инверсии в трехмерном пространстве все стрелочки перевернутся и направятся вниз, так что узор не воспроизведется. Если мы обозначим острия и хвосты стрелок точками и крестиками, то сможем образовать трехмерный рисунок (фиг. 30.9,в), который несимметричен относительно инверсии, или же мы можем получить рисунок, который такой симметрией обладает (фиг. 30.9,г). Заметьте, что трехмерную инверсию нельзя получить никакой комбинацией вращений.

Если мы будем характеризовать «симметрию» рисунка (или решетки) разного рода операциями симметрии, которые мы только что описали, то окажется, что в двумерном случае существуют 17 различных форм узоров. Узор с наинизшей возможной симметрией мы изобразили на фиг. 30.1, а узор с одной из наивысших симметрий - на фиг. 30.7. Отыщите сами все 17 возможных форм рисунков.

Удивительно, как мало типов из этих 17 используется при изготовлении обоев и тканей! Всегда видишь одни и те же три или четыре основных типа. В чем здесь дело? Неужели так убога фантазия художников или, может быть, многие из возможных типов рисунков не будут радовать глаз?

 

1
Оглавление
email@scask.ru