Главная > Фейнмановские лекции по физике. Т.7. Физика сплошных сред
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 7. Тензоры высших рангов

Тензор напряжений  описывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформации удобно описывать с помощью другого тензора  - так называемого тензора деформаций. Для простого объекта, подобного бруску из металла, изменение длины , как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука

.

Для произвольных деформаций упругого твердого тела тензор деформаций  связан с тензором напряжений  системой линейных уравнений

.                      (31.26)

Вы знаете также, что потенциальная энергия пружины (или бруска) равна

,

а обобщением плотности упругой энергии для твердого тела будет выражение

.                       (31.27)

Полное описание упругих свойств кристалла должно задаваться коэффициентами . Это знакомит нас с новым зверем - тензором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений - ,  или , то всего оказывается  коэффициент. Но различны из них на самом деле только 21. Во-первых, поскольку тензор  симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициентов. Затем, не изменяя энергии, мы можем переставить  и , так что  должно быть симметрично при перестановке пары индексов  и . Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей возможной симметрии, требуется 21 упругая постоянная! Разумеется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кристалл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.

В справедливости последнего утверждения можно убедиться следующим образом. В случае изотропного материала компоненты  не должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры . Но существует лишь два возможных выражения, имеющих требуемую симметрию, - это  и , так что  должно быть их линейной комбинацией. Таким образом, для изотропного материала

;

следовательно, чтобы описать упругие свойства материала, требуются две постоянные:  и . Я предоставляю вам самим доказать, что для кубического кристалла требуются три такие постоянные.

И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При напряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид

,

где  - электрическое поле, a  - пьезоэлектрические коэффициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены ), то все его пьезоэлектрические коэффициенты равны нулю.

 

1
Оглавление
email@scask.ru