Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.9. КАРТЫ КАРНОКарты Карио представляют собой специально организованные таблицы соответствия, на которых удобно осуществляются операции склеивания при упрощении функции на пути к минимальным формам. Столбчы и строки таблицы соответствуют всевозможным наборам значений переменных, причем эти наборы расположены в таком порядке, что каждый последующий отличается от предыдущего только одной из переменных. Благодаря этому соседнне ячейки по горизонтали и вертикали отличаются значением только одной переменной. Ячейки, расположенные по краям таблицы, также считаются соседними и обладают этим свойством. На рис. 2.1 показаны карты Карно для двух, трех и четырех переменных.
Рис. 2.1. Каждому набору значений переменных по строкам и столбцам соответствует своя ячейка, расположенная на их пересечении. Она заполняется единицей, если на соответствующем наборе функция принимает единичное значение, или нулем при нулевом значении функции (нули обычно не вписываются, а оставляются пустые клетки). Таким образом, отмеченные ячейки соответствуют ыицтермам, а неотмеченные — макстермам канонических форм. Например, на рис. 2.2,а показана карта Карно для функцин, заданной таблицей соответствия из рассмотренного в § 2.7 примере. Операции склеивания двух минтермов Считывание минтермов с карты Карно осуществляется последовательным рассмотрением групп ячеек. В минтерм входят только те переменные, которые сохраняют свои значения в данной группе, причем значениям 1 соответствует сама переменная, а значению 0 — ее отрицание. Переменные, которые принимают в данной группе различные значения (0 и 1), являются свободными и в данном минтерме отсутствуют. Примеры считывания минтермов с карт Карно для различного числа переменных показаны на рис. 2.3.
Рис. 2.2.
Рис. 2.3. Любая совокупность групп ячеек, покрывающая все отмеченные ячейки, соответствует некоторой сумме минтермов различных рангов, которая равнозначна данной функции. Стремление к простейшей форме интуитивно понимается как поиск такого минимального покрытия, число групп в котором было бы поменьше, а сами группы были покрупнее. Действительно, чем меньше групп в покрытии, тем меньше минтермов в формуле, а при увеличении размеров группы соответственно понижается ранг минтерма, а значит, уменьшается количество содержащихся в нем переменных. Практически для отыскания минимальною покрытия на карте Карно прежде всего выбирается отмеченная ячейка, входящая в такую наибольшую группу, которая покрывает любые другие возможные группы с этой ячейкой. После формирования этой наибольшей группы по тому же признаку выбираетси другая
Рис. 2.4. Наглядность карт Карно позволяет решать задачи минимизации, не прибегая к промежуточным покрытиям — сокращенным и тупиковым формам, В качестве примера на рис. 2.4 показана функция, заданная таблицей соответствия:
Сначала строятся простейшие покрытия на каждой карте раздельно, с которых списываются две функции: для левой карты
Рис. 2.5. Затем ищутся такие импликанты в этих функциях, которые различаются только вхождением
Для функций шести переменных потребовалось бы четыре карты Карно, а с каждой новой переменной количество требуемых карт увеличивается вдвое и, например, для восьми переменных уже равно 16. В практике используются и другие графические структуры, например, карты Вейча, которые отличаются только способом разметки переменных. Ясно, что графические методы пригодны для минимизации вручную сравнительно простых функций. В то же время машинные методы анализа и проектирования логических схем основаны на формальном алгоритме Квайиа-Мак-Класки и его разновидностях. Для получения минимальной формы инверсии функции необходимо найти на карте Карно минимальное покрытие совокупности нулевых ячеек и описать соответствующую формулу по указанному выше правилу. Так, для функции на рис.
|
1 |
Оглавление
|