Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 1. ЧИСЛА И КОДЫ1.1. СИСТЕМЫ СЧИСЛЕНИЯВ дискретной технике вся информация независимо от ее характера представляется в числовой форме, причем используются только позиционные системы счисления. В этих системах любое целое неотрицательное
Привычная десятичная система
Среди других систем счисления чаще всего используются восьмеричная и шестнадцатеричная. В восьмеричной системе, цифры изображаются теми же символами, что и в десятичной, а в шестнадцатеричной системе к ним добавляется еще шесть символов А, В, С, D, Е, F, которые соответствуют десятичным числам 10, 11, 12, 13, 14, 15. Запись первых 32 чисел в системах счисления с основанием 2, 8 и 16 показаны в табл. 1.1. Если требуется указать основание системы счисления, запись числа сопровождается десятичным индексом. Например:
Отсюда видно, что для преобразования числа из любой системы счисления в десятичную достаточно вычислить значение соответствующего многочлена, подставив в него десятичные значения разрядов и основания системы счисления. Вычисления удобно выполнять по схеме Горнера, основанной на представлении многочлена (1.1) в виде
Таблица 1.1
т. е. цифра
Наибольшее десятичное число, которое можно представить В общем случае, когда число имеет дробную часть, последняя отделяется от целой части разделительным символом — точкой или запятой:
что соответствует числу:
Выражение любого числа в десятичной системе сводится к вычислению его многочленного представления, например:
Арифметические операции над 1.2. ПРЕОБРАЗОВАНИЕ ЧИСЕЛ Чаще всего приходится переводить десятичные числа в двоичные и обратно, что можно выполнить с помощью универсального алгоритма, применяемого раздельно для целой и дробной частей. Перевод целой части десятичного числа в двоичную систему сводится к записи в обратном порядке остатков (0 или 1), получаемых при делении исходного числа и каждого последующего частного на два. Дробная часть получается из целых частей (0 или 1) при ее последовательном умножении на два, причем такое умножение продолжается до тех пор, пока дробная часть обратится в нуль или получится требуемое количество знаков после разделительной точкч. Покажем, например, что
Обратное преобразование двоичного числа в десятичное можно выполнить аналогично с тем различием, что делить и умножать нужно на 10 в двоичной системе, т. е. на 10102. Так, соотношение
Как видно, при использовании этого алгоритма цифры десятичного эквивалента двоичного числа выражаются первоначально в двоичной системе. Отводя для каждого десятичного разряда четыре двоичных разряда (тетраду), получим двоично-десятичную запись числа:
Такое представление чисел удобно при обработке в вычислительных машинах информации, характеризующейся большим количеством исходных данных и результатов в десятичной системе счисления. Проще всего переводятся в двоичные числа восьмеричные и шестнадцатеричные, основания которых представляют собой целые степени двойки, т. е.
Обратный перевод двоичного числа в восьмеричное или шестнадцатеричное выполняется его разбиением на блоки (триады или тетрады) влево и вправо от разделительного символа. Недостающие разряды в крайнем левом и правом блоках дополняются нулями. Затем каждая триада заменяется восьмеричным, а каждая тетрада шестнадцатеричным числом. Например:
Восьмеричное и шестнадцатеричное представления двоичных чисел повсеместно используются для более компактной записи при программировании и вводе программ в вычислительные машины. В частности, шестнадцатеричная система удобна для представления укрупненной единицы информации — байта, равного 8 битам, для чего достаточно двузначного шестнадцатеричного числа.
|
1 |
Оглавление
|