Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 9. АНАЛОГО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ9.1. ДИСКРЕТИЗАЦИЯ НЕПРЕРЫВНЫХ СИГНАЛОВДискретизацией сигнала называется измерительное преобразование непрерывного сигнала
где
Рис. 9.1. Дискретизацию сигнала по времени можно выполнить равномерно с посюянпым шагем В качестве восстанавливающего сигнала используют сумму базисных функций
где Коэффициенты ряда
то система базисных функций выбирается ортогональной, а коэффициенты ряда определяют как
При этом для периодических сигналов в качестве базисных функций можно использовать систему тригонометрических функций кратных аргументов Если коэффициенты ряда и базисные функции выбирают по критерию совпадения в моменты дискретизации мгновенных Значений восстанавливаемого сигнала и мгновенных значений дискретизированного сигнала, то их параметры определяют путем решения системы уравнений
В случае, если сигнал
где Однако реальные сигналы
где В качестве базисных функций при восстановлении сигнала часто используют степенной полином При восстановлении (аппроксимации) сигнала В случае использования степенных полиномов нулевого порядка
Максимальная погрешность аппроксимации в этом случае будет на участке сигнала, где первая производная
Рис. 9.2. При использовании степенных полиномов первого порядка
Погрешность аппроксимации при этом будет наибольшей на тех участках изменения сигнала, где вторая производная
При параболической аппроксимации погрешность будет наибольшей на тех участках изменения сигнала, где третья производная имеет максимальное значение
Дискретизация сигнала сопровождается кодированием информации, заключающейся в том, что каждому дискретному значению ставится в соответствие определенная кодовая комбинация, представленная в двоичном или двоично-десятичном кодах. При этом дискретизация сигнала, т. е. преобразование Сигнала в цифровой код реализуется с помощью АЦП и является измерительным процессом, состоящим из ряда операций сравнения измеряемой величины с набором эталонных дискретных величин. В АЦП аналоговая величина поступает на вход сравнивающего устройства, на второй вход которого в определенной последовательности подаются величины одинаковой природы с измеряемой величиной, вырабатываемые блоком эталонных величин (преобразование вида код — аналог, осуществляемое с помощью ЦАП). Сравнивающее устройство вырабатывает последовательность кодовых комбинаций, являющихся результатом сравнения измеряемой величины с эталонной и используемых для управления цифровым автоматом. При этом состояние цифрового автомата в конце преобразования определяет цифровой код измерительной величины. Основной особенностью дискретизации сигнала является то, что за счет конечного времени одного преобразования и неопределенности момента его окончания не удается получить однозначное соответствие между значениями отсчетов и Моментами времени, к которым их следует отнести. Таким образом, при дискретизации изменяющихся во времени сигналов возникают динамические погрешности, для оценки которых вводят понятие неопределенности [7]. При равномерной дискретизации возникают амплитудные погрешности, которые называются апертурными, численно равные приращению сигнала в течение апертурного времени, равного шагу дискретизации
|
1 |
Оглавление
|