Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 30. РЕАКТИВНЫЕ ДВИГАТЕЛИТурбореактивный двигатель. Вместо вращения винта самолета, теплохода или ротора электрогенератора газовая турбина может быть использована как реактивный двигатель. Воздух и продукты горения выбрасываются из газовой турбины с большой скоростью. Реактивная сила тяги, возникающая при этом, может быть использована для движения самолета, теплохода или железнодорожного состава. Основное отличие турбореактивного двигателя от турбовинтового заключается в том, что в нем газовая турбина используется лишь для приведения в действие воздушного компрессора и отнимает у газовой струи, выходящей из камеры сгорания, лишь небольшую часть энергии. В результате газовая струя имеет на выходе из турбины высокую скорость и создает реактивную силу тяги. Успешное использование турбореактивных двигателей в авиации началось в 40-х годах созданием реактивных истребителей, а первый в нашей стране реактивный пассажирский самолет ТУ-104 вышел на линию Москва — Иркутск в 1956 г. (см. цветную вклейку III). Турбореактивными двигателями оборудованы известные всему миру самолеты ИЛ-62, ТУ-154 и первый в мире сверхзвуковой пассажирский самолет ТУ-144 (рис. 41). Четыре его двигателя общей мощностью Мощность и сила тяги турбореактивного двигателя может быть значительно увеличена за счет использования режима форсажа. С этой целью в струю горячего газа, выходящего из турбины, впрыскивается топливо. Так как в струе горячего газа, выходящего из турбины, имеется большое количество кислорода, происходит горение топлива. В результате этого процесса, называемого дожиганием, температура, давление и, следовательно, скорость истечения газовой струи повышаются. За счет такого режима работы сила тяги двигателя кратковременно может быть увеличена на 25-30 % на малых скоростях и до 70% при больших скоростях полета.
Рис. 41. Первый турбореактивный пассажирский сверхзвуковой самолет ТУ-144 Форсажными камерами позади турбины обычно оборудуются реактивные двигатели истребителей (см. цветную вклейку III). Имеются такие камеры и у двигателей самолета ТУ-144. Прямоточный воздушно-реактивный двигатель. Самолетный реактивный двигатель может быть устроен и значительно проще, без компрессора и газовой турбины, так как при большой скорости движения самолета надобность в компрессоре отпадает. Повышения давления воздуха перед камерой сгорания можно добиться выбором формы воздухозаборника и камеры сгорания (рис. 42). Если площадь поперечного сечения воздушного потока у входа двигателя меньше, чем у камеры сгорания, то скорость движения воздуха в камере сгорания меньше, чем у входа, так как за единицу времени через поперечное сечение двигателя должно проходить одно и то же количество воздуха. Согласно закону Бернулли в том участке трубы, где скорость движения газа меньше, давление выше.
Рис. 42. Прямоточный воздушно-реактивный двигатель Впрыскивание и сжигание горючего повышает температуру и давление воздуха в камере сгорания, и он выходит из камеры сгорания с большой скоростью. Скорость истечения горячего воздуха к продуктов горения повышается еще и за счет уменьшения площади поперечного сечения отверстия на выходе, поэтому скорость газов Так как скорость воздуха относительно самолета на выходе двигателя равна скорости движения самолета относительно воздуха, то в результате работы реактивного двигателя в системе отсчета, связанной с самолетом, некоторое количество воздуха массой Реактивные двигатели рассмотренного типа называются прямоточными воздушн При таких серьезных достоинствах, как простота устройства и малые размеры, широкому применению прямоточных воздушно-реактивных двигателей в авиации препятствует необходимость предварительного разгона самолета с помощью двигателей другого типа. Этого недостатка не имеет пульсирующий воздушно-реактивный двигатель. Пульсирующий воздушно-реактивный двигатель. Главное отличие пульсирующего воздушн При впрыскивании и поджигании порции топлива температура и давление воздуха в камере сгорания резко повышаются, клапаны со стороны воздухозаборника в это время закрыты. Расширение нагретого воздуха и продуктов горения приводит к выбросу струи горячих газов через открытое
Рис. 43. Пульсирующий воздушно-реактивный двигатель
Рис. 44. Реактивный двигатель на твердом топливе сопло двигателя и созданию реактивной силы. Так как доступа новым порциям воздуха в камеру сгорания в это время нет и подача топлива прекратилась, горение прекращается и давление в камере сгорания резко уменьшается. Это приводит к открыванию клапанов со стороны воздухозаборника и поступлению порции воздуха. В этот момент в камеру впрыскивается горючее. Сжигание новой порции горючего приводит вновь к повышению давления в камере, клапаны на входе закрываются, и происходит выброс порции горячих газов через сопло на выходе, создающий реактивную силу тяги двигателя. Частота пульсаций достигает нескольких тысяч в минуту. Ракетные двигатели. Реактивные двигатели, не использующиг для своей работы окружающую среду, например воздух земной атмосферы, называются ракетными двигателями. Основные части ракетного двигателя — камера сгорания и сопло. В принципе для ракетного двигателя могут быть использованы различные источники энергии, но на практике пока применяются в основном химические ракетные двигатели. Сжигание горючего в камере сгорания химического ракетного двигателя приводит к образованию продуктов горения в газообразном состоянии. Выход струи газа через сопло приводит к возникновению реактивной силы. Наиболее просто устроены ракетные двигатели, работающие на твердом топливе (РДТТ) (рис. 44). Примером твердого ракетного топлива может служить порох. РДТТ находят применение в военной технике. Ракетные снаряды с РДТТ успешно применялись в годы Великой Отечественной войны на реактивных установках — «катюшах» (рис. 45). Постоянная готовность РДТТ к работе, простота и надежность позволяют использовать их в баллистических ракетах, которыми вооружены атомные подводные лодки, и в межконтинентальных баллистических ракетах. Недостатком РДТТ является трудность управления его работой. Значительно удобнее в управлении жидкостные реактивные двигатели (ЖРД). Применение в качестве горючего и окислителя жидких веществ позволяет также получить больший выход энергии на единицу массы топлива и использовать более высокие скорости истечения газовой струи. Если для РДТТ максимальная скорость истечения составляет 2-3 км/с, то у ЖРД она Рис. 45. (см. скан) Гвардейские минометы «катюши» может достигать 3-5 км/с. Этими преимуществами ЖРД объясняется широкое их использование в ракетно-космической технике. Впервые возможность и необходимость использования ЖРД для запуска человека или автоматических устройств в космическое пространство была обоснована Константином Эдуардовичем Циолковским в статье «Исследование мировых пространств реактивными приборами», опубликованной в 1903 г. В этой работе К. Э. Циолковский предложил конструкцию космической ракеты с ЖРД (рис. 46), проанализировал возможности использования различных химических веществ в качестве горючего и окислителей, рассмотрел способы управления полетом ракеты. Первая советская жидкостная ракета «ГИРД-09» была создана в 1933 г. под руководством Сергея Павловича Королева по проекту М. К. Тихонравова. Двигатель ракеты работал на жидком кислороде и бензине.
Рис. 46. Конструкция жидкостной ракеты по К. Э. Циолковскому Дальнейшая успешная разработка ракетно-космической техники, выполненная под руководством академика С. П. Королева, позволила осуществить в нашей стране запуск первого в мире искусственного спутника Земли (4 октября 1957 г.), полет вокруг Земли первого в мире космонавта Ю. А. Гагарина (12 апреля 1961 г.), осуществить запуск межпланетных автоматических станций на Луну, Марс, Венеру. Жидкостные реактивные двигатели для советских космических ракет разработаны под руководством академика В а-лентина Петровича Глушко. Мощность первой ступени ракеты-носителя «Восток» с ЖРД РД-107 (рис. 47) достигала 15 млн. кВт! Ракета-носитель «Протон», выводившая в космическое пространство советские ИСЗ «Протон» с массой 12,2 т, имеет мощность около 45 млн. кВт! Двигатели этой, космической ракеты развивают мощность, в 7 раз превосходящую мощность крупнейшей в мире Красноярской гидроэлектростанции! Схема устройства жидкостной ракеты представлена на рисунке 48. Масштабы современной космической техники можно охарактеризовать параметрами ракетных систем, с помощью которых был произведен запуск космических кораблей «Союз» и «Аполлон» в ходе осуществления совместной советско-американской программы. Трехступенчатая ракета-носитель советского космического корабля «Союз» с жидкостно-ракетными двигателями имеет общую длину 49,3 м, максимальный диаметр по стабилизаторам 10,3 м, стартовую массу 330 т. Американский космический корабль «Аполлон» выводился на орбиту двухступенчатой ракетой-носителем «Сатурн-1В» общей (см. скан) Рис. 47. Ракетный двигатель РД—107:1 — рулевые камеры сгорания и сопла; 2 — основные камеры сгорания; 3 — насос подачи окислителя; 4—насос подачи горючего; 5 — силовая рама; 6 — трубопроводы окислителя; 7 — трубопроводы горючего
Рис. 48. Схема устройства жидкостной ракеты: 1 — полезней груз; 2 — окислитель; 3— горючее; 4 - насосы; 5 — камера сгорания; 6 — сопло высотой 68,2 м, с максимальным размахом стабилизирующих поверхностей 12,4 м и массой 587 т. Интересно отметить, что в некоторых вариантах американской ракеты-носителя «Сатурн» в качестве горючего и окислителя используются, как и предлагал К. Э. Циолковский, жидкий водород и жидкий кислород. Мощность, сила тяги и КПД ракетного двигателя. Полезную мощность ракетного двигателя можно определить, считая приближенно, что вся полезная работа его затрачивается на сообщение кинетической энергии струе газов:
где m — масса газов, выброшенных ракетным двигателем за
где
Отсюда
Тогда между силой тяги
КПД ракетного двигателя можно определить как отношение его полезной мощности N к мощности
где Например, при использовании в качестве ракетного горючего керосина, а в качестве окислителя жидкого кислорода на 1 кг керосина расходуется 2,56 кг кислорода, поэтому теплотворная способность
Оценим КПД ракетного двигателя, использующего в качестве горючего и окислителя водород и кислород. При образовании 1 кг водяного пара освобождается
Полученный результат показывает, что КПД ракетного двигателя может превышать КПД всех других видов тепловььх машин. Однако не следует забывать, что при больших значениях КПД ракетного двигателя как тепловой машины его применение во многих случаях оказывается экономически нецелесообразным. Хотя он эффективно преобразует внутреннюю энергию горючего в механическую энергию, при малом значении массы выброшенных газов по сравнению с массой ракеты (или другого объекта, разгоняемого ракетным двигателем) большая часть этой механической энергии передается струе истекающих газов, а не ракете. КПД ракеты, определяемый по кинетической энергии только полезного груза, повышается при увеличении времени работы ракетного двигателя потому, что значительная часть энергии, затраченная, казалось бы, бесполезно на увеличение кинетической энергии горючего и окислителя, передается последующей ступени ракеты при их сжигании.
|
1 |
Оглавление
|