Главная > Материаловедение: Учебник для высших технических учебных заведений
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ЧАСТЬ II. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

ГЛАВА XXVI. ОБЩИЕ СВЕДЕНИЯ О НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ

К неметаллическим материалам относятся полимерные материалы органические и неорганические: различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика.

Такие их свойства, как достаточная прочность, жесткость и эластичность при малой плотности, светопрозрачность, химическая стойкость, диэлектрические свойства, делают эти материалы часто незаменимыми. Также следует отметить их технологичность и эффективность при использовании. Эти материалы находят все большее применение в различных отраслях машиностроения.

Основой неметаллических материалов являются полимеры, главным образом синтетические. Создателем структурной теории химического строения органических соединений является А. М. Бутлеров (1826-1886 гг.). Промышленное производство первых пластмасс (фенопластов) — результат работ, проведенных Г. С. Петровым (1907-1914 гг.). С. В. Лебедевым впервые в мире осуществлен промышленный синтез каучука (1932 г.). Н. Н. Семеновым разработана теория цепных реакций и распространена на механизм цепной полимеризации. Успешное развитие химии и физики полимеров связано с именами видных ученых: П. П. Кобеко, В. А. Каргина, А. П. Александрова, С. С. Медведева, С. Н. Ушакова, В. В. Коршака и др. Развитие термостойких полимеров связано с именем К. А. Андрианова.

В области создания полимерных материалов большой вклад внесен зарубежными учеными: К. Циглером (ФРГ), Д. Наттом (Италия) и др.

1. ПОНЯТИЕ О НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ И КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

Полимерами называют вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры. Молекулярная масса их составляет от 5000 до 1 000 000. При таких больших размерах макромолекул свойства веществ определяются не только химическим составом этих молекул, но и их взаимным расположением и строением.

Макромолекулы полимера представляют еобой цепочки, состоящие из отдельных звеньев. Длина цепи в несколько тысяч раз больше их поперечного сечения, поэтому макромолекулам полимера свойственна гибкость (которая ограничена размером сегментов — жестких участков, состоящих из нескольких звеньев). Гибкость макромолекул является одной из отличительных особенностей полимеров.

Атомы, входящие в основную цепь, связаны прочной химической (ковалентной) связью. Энергия химических связей составляет силы межмолекулярного взаимодействия, имеющие обычно физическую природу, значительно меньше Наиболее сильные межмолекулярные взаимодействия осуществляются посредством водородных связей (до Сцепление молекул материала за счет сил притяжения называется когезией. Макромолекулы могут быть построены из одинаковых по химическому строению мономеров (полимеры) или разнородных звеньев (сополимеры).

Большое значение имеет стереорегулярность полимера, когда все звенья и заместители расположены в пространстве в определенном порядке. Это придает материалу повышенные физико-механические свойства (по сравнению 6 нерегулярными полимерами).

Полимеры встречаются в природе — натуральный каучук, целлюлоза, слюда, асбест, природный графит. Однако ведущей группой являются синтетические полимеры.

Классификация полимеров. Для удобства изучения связи состава, структуры со свойствами полимеров их можно классифицировать по различным признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву). По составу все полимеры подразделяют на органические, элементоорганические, неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами.

В гетероцепных полимерах атомы других элементов, присутствующие в основной цепи, кроме углерода, существенно изменяют свойства полимера. Так, в макромолекулах атомы кислорода способствуют повышению гибкости цепи, атомы фосфора и хлора повышают огнестойкость, атомы серы придают газонепроницаемость, атомы фтора, даже в виде радикалов, сообщают полимеру высокую химическую стойкость и т. д.

Органическими полимерами являются смолы и каучуки. ментоорганические соединения содержат в составе основной цепи неорганические атомы сочетающиеся с органическими радикалами Эти радикалы придают материалу прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. В природе таких соединений не

Рис. 199. Формы макромолекул полимеров: а — линейная; б - разпотпленная; в - лестничная, г - пространственная, сетчатая; д - паркетная

встречается. Представителями их являются кремнийорганические соединения.

К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе этих соединений углеродного скелета нет. Основу неорганических материалов составляют оксиды кремния, алюминия, магния, кальция и др.

В силикатах существуют два типа связей: атомы в цепи соединены ковалентными связями а цепи между собой — ионными связями. Неорганические полимеры отличаются более высокой плотностью, высокой длительной теплостойкостью. Однако стекла и керамика хрупкие, плохо переносят динамические нагрузки. К неорганическим полимерам относится также графит, представляющий собой карбоцепной полимер.

В технических материалах используют отдельные виды полимеров и сочетание различных групп полимеров; такие материалы называют композиционными (например, стеклопластики).

Своеобразие свойств полимеров обусловлено структурой их макромолекул. форме макромолекул полимеры делят на линейные (цеповидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые. Линейные макромолекулы полимера представляют собой длинные зигзагообразные или закрученные в спираль цепочки (рис. 199, а).

Гибкие макромолекулы с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала, способность его размягчаться при нагреве, а при охлаждении вновь затвердевать (полиэтилен, полиамиды и др.)

Разветвленные макромолекулы (рис. 199, б), являясь также линейными, отличаются наличием боковых ответвлений, что препятствует их плотной упаковке (полиизобутилен).

Макромолекула лестничного полимера (рис. 199, в) состоит из двух цепей, соединенных химическими связями. Лестничные полимеры имеют более жесткую основную цепь и обладают повышенной теплостойкостью, большей жесткостью, они нерастворимы в стандартных органических растворителях (кремпийоргатшче-ские полимеры).

Пространственные или сетчатые полимеры образуются при соединении («сшивке») макромолекул между собой в поперечном направлении прочными химическими связями непосредственно или через химические элементы или радикалы. В результате образуется сетчатая структура с различной густотой сетки (рис. 199, г). Редкосетчатые (сетчатые) полимеры теряют способность растворяться и плавиться, они обладают упругостью (мягкие резины). Густосетчатые (пространственные) полимеры отличаются твердостью, повышенной теплостойкостью, нерастворимостью. Пространственные полимеры лежат в основе конструкционных неметаллических материалов. К сетчатым полимерам относятся также пластинчатые (паркетные) полимеры (рис. 199, д, графит).

По фазовому состоянию полимеры подразделяют на аморфные и кристаллические.

Впервые в работах В. А. Каргина, А. И. Китайгородского и Г. Л. Слонимского (1957 г.) показано, что макромолекулу в полимерах расположены не хаотично, а имеют упорядоченное взаимное расположение. Структуры, возникающие в результате различной укладки молекул, называют надмолекулярными. У по рядоченность в структурообразовании определяется гибкостью линейных и разветвленных макромолекул, способностью их менять форму, перемещаться по частям; большое влияние оказывают жесткость цепи и силы межмолекулярного притяжения. Впоследствии эти представления получили дальнейшее развитие. Однако вопрос о надмолекулярных структурах в аморфных полимерах окончательно не сформулирован.

Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачка состоит из многих рядов макромолекул, расположенных последовательно друг за друшм. Пачки способны перемещаться относительно соседних элементов, так как они являются структурными элементами.

Некоторые аморфные полимеры могут быть также построены из свернутых в клубки цепей, так называемых глобул Глобулярная структура полимеров дает невысокие механические смсгва (хрупкое разрушение по границам глобул). При повышенных температурах глобула разворачивается в линейные образования, способствующие повышению механических свойств полимеров. Структуры в этих полимерах флуктуационны, термодинамически

Рис. 200. Надмолекулярные структуры полимеров: а — схема пластинчатого единичного кристалла; б - схема сферолита; в — схема фибриллы, состоящей из трех микрофибрилл

нестабильны и характеризуются относительно небольшим временем жизни.

Кристаллические полимеры образуются в том случае, если их макромолекулы достаточно гибкие и имеют регулярную структуру. Тогда при соответствующих условиях возможны фазовый переход внутри пачки и образование пространственных решеток кристаллов.

Гибкие пачки складываются в ленты путем многократного поворота пачек на 180°. Затем ленты, соединяясь друг с другом своими плоскими сторонами, образуют пластины (рис. 200, а). Эти пластины наслаиваются, в результате чего получаются правильные кристаллы.

В том случае, когда образование из более мелких структурных элементов правильных объемных кристаллов затруднено, возникают сферолиты (рис. 200, б). Сферолиты состоят из лучей, образованных чередованием кристаллических и аморфных участков. В процессе ориентации гибкоцепных полимеров получаются фибриллярные структуры, состоящие из микрофибрилл (рис. 200, б). Между кристаллитами находятся аморфные участки.

Кристаллические структуры являются дискретными, организованными, термодинамически стабильными. В отсутствие внешних силовых полей время жизни и (полиэтилен, полипропилен, полиамиды и др.). Кристаллизация происходит в определенном интервале температур. В обычных условиях полной кристаллизации не происходит и структура получается двухфазной. Кристалличность сообщает полимеру большую жесткость и твердость, а также теплостойкость. При длительном хранении, эксплуатации и переработке надмолекулярные структуры могут претерпевать изменения.

По полярности полимеры подразделяют на полярные и неполярные. Полярность определяется наличием в их составе диполей — разобщенных центров распределения положительных и

отрицательных зарядов. Первым условием полярности является присутствие в полимере полярных связей (группировок - ), вторым — несимметрия в их структуре. По полярности связи В неполярных полимерах дипольные моменты связей атомов взаимно компенсируются.

Неполярные полимеры (на основе углеводородов) являются высококачественными высокочастотными диэлектриками, они обладают хорошей морозостойкостью. Полярность сообщает полимерам жесткость, теплостойкость, но морозостойкость у полярных материалов низкая.

Все полимеры по отношению к нагреву подразделяют на термопластичные и термореактивные.

Термопластичные полимеры при нагреве размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим. Структура макромолекул таких полимеров линейная или разветвленная.

Термореактивные полимеры на первой стадия образования имеют линейную структуру и при нагреве размягчаются, затем вследствие протекания химических реакций затвердевают (образуется пространственная структура) и в дальнейшем остаются твердыми. Отвержденное состояние полимера называется термостабильным.

Categories

1
Оглавление
email@scask.ru