Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3. ЗАКАЛКАЗакалка — термическая обработка — заключается в нагреве стали до температуры выше критической Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости, износостойкости и прочности,
Рис. 131. Схема закалки доэвтектоидной стали: а — схема закалки; б — изотермическая диаграмма распада переохлажденного аустенита доэвтектоидной стали с указанием скорости охлаждения при закалке
Рис. 132. Диаграмма состояния Выбор температуры закалки. Доэвтектоидные стали нагревают до температуры на 30—50 °С выше точки Заэвтектоидные стали под закалку нагревают несколько выше температуры точки температур выше точки Для многих высоколегированных сталей температура нагрева под закалку значительно превышает критические точки Это повышение температуры не ведет к заметному росту зерна, так как нераетворенные частицы карбидов тормозят рост зерна ауетенита. Продолжительность нагрева при аустенитизации стали. Продолжительность нагрева должна обеспечить прогрев изделия по сечению и завершение фазовых превращений, но не должна быть слишком большой, чтобы не вызвать роста зерна и обезуглероживания поверхностных слоев стали. Общая продолжительность нагрева В настоящее время разработаны инженерные методы расчета основных типовых параметров — продолжительности нагрева, скорости нагрева, перепада температуры по толщине металла и т. д. Но часто пользуются опытными данными. На 1 мм сечения или толщины изделия из доэвтектоидных сталей продолжительность нагрева принимают в электропечах 45—75 с, а в соляной ванне — 15—20 с. Величина Продолжительность изотермической выдержки при заданной температуре для деталей машин часто принимают равной 15— Выдержка в электрической печи при температуре закалки для инструмента из углеродистой стали Фасонный инструмент и детали машин сложных форм при нагреве под закалку для уменьшения деформации рекомендуется предварительно подогревать в печи при 400-600 °С. Выбор среды для нагрева при термической обработке. При нагреве в пламенных или электрических печах взаимодействие печной атмосферы Для предохранения изделий от окисления и обезуглероживания нередко в рабочее пространство печи вводят защитную газовую среду (контролируемые атмосферы). В качестве таких сред применяются следующие атмосферы: 1) эндотермическая (условное обозначение 2) экзотермическая, получаемая частичным сжиганием природного газа при 3) экзотермическая, получаемая почти полным сжиганием природного газа при Охлаждающие среды для закалки. Охлаждение при закалке должно обеспечить получение структуры мартенсита в пределах заданного сечения изделия (определенную прокаливаемость) и не должно вызывать закалочных дефектов: трещин, деформаций, коробления и высоких растягивающих остаточных напряжений в поверхностных слоях. Наиболее желательна высокая скорость охлаждения (выше критической скорости закалки) в интервале температур Чаще для закалки используют кипящие жидкости — воду, водные растворы щелочей и солей, масла. При закалке в этих средах различают три периода: Таблица 2 (см. скан) Относительная интенсивность охлаждения закалочных сред 1) пленочное кипение, когда на поверхности стали образуется «паровая рубашка»; в этот период скорость охлаждения сравнительно невелика; 2) пузырьковое кипение, наступающее при полном разрушении паровой пленки, наблюдаемое при охлаждении поверхности до температуры ниже критической; в этот период происходит быстрый отвод теплоты; 3) конвективный теплообмен, который отвечает температурам ниже температуры кипения охлаждающей жидкости; теплоотвод в этот период происходит с наименьшей скоростью. В табл. 2 приведены примерный температурный интервал пузырькового кипения и относительная интенсивность охлаждения Я в середине этого интервала для различных охлаждающих сред. При закалке углеродистой и некоторых низколегированных сталей, имеющих малую устойчивость переохлажденного аустенита, в качестве охлаждающей среды применяют воду и водные растворы Вода как охлаждающая среда имеет существенные недостатки. Высокая скорость охлаждения в области температур мартенситного превращения нередко приводит к образованию закалочных дефектов; с повышением температуры воды резко ухудшается ее закалочная способность (см. табл. 1). При закалке изделий в горячей воде вследствие их медленного охлаждения при высоких температурах и быстрого охлаждения при низких температурах тепловые напряжения получаются низкими, а наиболее опасные структурные — высокими, что и может вызвать образование трещин. Наиболее высокой и равномерной охлаждающей способностью отличаются холодные 8-12 %-ные водные растворы При закалке в водных растворах паровая рубашка разрушается почти мгновенно и охлаждение происходит более равномерно и
Рис. 133. Зависимость прокаливаемости от критической скорости вакалки в основном протекает на стадии пузырькового кипения. Увеличение охлаждающей способности достигается при использовании струйного или душевого охлаждения, широко применяемого, например, при поверхностной закалке. Дальнейшим усовершенствованием методов охлаждения явилось применение смесей воды с воздухом, подаваемых через форсунки. Водовоздушные среды применяют для охлаждения крупных поковок, рельсов и т. д. Для легированных сталей, обладающих более высокой устойчивостью переохлажденного аустенита при закалке, применяют минеральное масло (чаще нефтяное). Масло как закалочная среда имеет следующие преимущества: небольшую скорость охлаждения в мартенситном интервале температур, что уменьшает возникновение закалочных дефектов, и постоянство закаливающей способности в широком интервале температур среды (20-150 °С). К недостаткам следует отнести повышенную воспламеняемость (температура вспышки 165— 300 °С), недостаточную стабильность и низкую охлаждающую способность в области температур перлитного превращения, а также повышенную стоимость. Температуру масла при закалке поддерживают в пределах 60-90 °С, когда его вязкость оказывается минимальной. Для закалки применяют водные растворы полимеров Все шире начинают применять охлаждение под давлением в среде азота, аргона и водорода. Закаливаемость и прокаливаемость стали. Под закаливаемостью понимают способность стали повышать твердость в результате закалки. Закаливаемость стали определяется в первую очередь содержанием в стали углерода. Чем больше в мартенсите углерода, тем выше его твердость. Легирующие элементы оказывают относительно небольшое влияние на закаливаемость. Под прокаливаемостью понимают способность стали получать закаленный слой в мартенситной или троосто-мартенситной структурой и высокой твердостью на ту или иную глубину. Прокаливаемость определяется критической скоростью охлаждения, зависящей от состава стали. Если действительная скорость охлаждения в сердцевине изделия будет превышать критическую скорость закалки Если действительная скорость охлаждения в сердцевине будет меньше За глубину закаленного слоя условно принимают расстояние от поверхности до полумартенситной зоны Прокаливаемость тем выше, чем меньше критическая скорость закалки, т. е. чем выше устойчивость переохлажденного аустенита.
Рис. 134. Твердость по сечению стали, содержащей 0,4% С и Легированные стали вследствие более высокой устойчивости переохлажденного аустенита и соответственно меньшей критической скорости охлаждения (см. рис. Устойчивость переохлажденного аустенита повышается, а критическая скорость закалки уменьшается только при том условии, если легирующие элементы растворены в аустените. Если легирующие элементы находятся в виде избыточных частиц карбидов, то они не повышают устойчивость аустенита и могут ее уменьшить, так как карбиды служат готовыми зародышами, облегчающими распад аустенита. Карбиды титана, ниобия и ванадия при нормально принятом нагреве под закалку обычно не растворяются в аустените и понижают прокаливаемость. Сильно влияет на прокаливаемость величина зерна аустенита. В углеродистой стали при укрупнении зерна от балла 6 до балла 1—2 (см. рис. 111) глубина закаленного слоя возрастает в 2—3 раза, поэтому увеличение температуры и длительности нагрева повышают прокаливаемость. Легирующие элементы, находящиеся в виде карбидов, не только создают дополнительные центры, способствующие распаду аустенита, но и измельчают его зерно, что также увеличивает критическую скорость закалки и уменьшает прокаливаемость. При сквозной закалке свойства стали, и в частности твердость, по всему сечению изделия одинаковы. При несквозной закалке изменение структуры стали по сечению способствует соответствующим изменениям свойств. Распределение твердости по сечению закаленных цилиндров из разных сталей показано на рис. 134. При несквозной прокаливаемости твердость падает от поверхности к сердцевине. На рис. 134 видно, что критический диаметр полумартенситной зоны углеродистой стали в данных условиях обработки составляет 25 мм, хромистой Влияние прокаливаемости на механические свойства можно показать на примере. Заготовки из углеродистой стали с Прокаливаемость углеродистой стали в небольших сечениях (диаметром до 15—20 мм) можно определить по виду излома закаленных образцов. Часто прокаливаемость определяют по кривым распределения твердости по сечению (см. рис. 134). Для этого образец ломают или разрезают и по диаметру сечения определяют твердость. Прокаливаемость стали в общем случае определяют методом торцовой закалки (ГОСТ 5657-69). Цилиндрический
Рис. 135. Определение прокаливаемости по торцовой пробе: а — схема вакалкн образца; б — изменение твердости по длине образца после торцовой закалкиз I — твердость полумартенситной зоны; 1 — сталь с низкой прокаливаемоотыо; 2 сталь с высокой прокаливаемостыо
Рис. 136. Определение прокаливаемости стали образец определенной формы и размеров (рис. 135, а), нагретый до заданной температуры, охлаждают водой с торца на специальной установке. После охлаждения измеряют твердость по длине (высоте) образца. Так как скорость охлаждения убывает по мере увеличения расстояния от торца, будет уменьшаться и твердость. Результаты испытаний выражают графически в координатах твердость — расстояние от охлаждаемого торца (рис. 135, б). Определив расстояние от торца до участка с твердостью, соответствующей полумартенситной зоне данной стали (рис. 135, б, I), можно по специальным номограммам найти критический диаметр. Чтобы характеристика прокаливаемости стали не была связана с видом охладителя, при использовании номограмм вводят понятие об идеальном критическом диаметре, который является наибольшим диаметром образца, прокаливаемого насквозь, при идеальном охлаждении. Поверхность образца в идеальном охладителе должна мгновенно принимать его температуру, т. е. охлаждение следует проводить с бесконечно большой скоростью. От идеального критического диаметра можно перейти к реальному критическому диаметру, используя номограмму, приведенную на рис. 135, б. Определим критический диаметр для стали 1 (см. рис. 135, б). Для этой стали расстояние от торца до поверхности полумартенситной зоны составляет 10 мм. Для определения критического диаметра на шкале расстояние от закаливаемого торца до полумартенситной зоны (рис. 136, а) находим деление 10 и опускаем перпендикуляр до пересечения с линией «идеальное охлаждение». От точки а проводим горизонтальную линию влево до пересечения с линией заданной Рис. 137. (см. скан) Полосы прокаливаемости для стали различного состава: охлаждающей среды — вода (точка На практике с достаточной точностью критический диаметр может быть определен по графику, представленному на рис. 136, б. Для этого на оси абсцисс откладывают расстояние от охлаждаемого торца до зоны, имеющей полумартенситную твердость, и восстанавливают перпендикуляр до пересечения с кривой для закалки в масле или воде. Горизонталь, проведенная от этой точки до ординаты, укажет величину Прокаливаемость даже одной и той же стали может колебаться в значительных пределах в зависимости от изменений химического состава, величины зерна, размера и формы изделия и многих других факторов. В связи с этим прокаливаемость стали каждой марки характеризуют не кривой, а так называемой полосой прокаливаемости, которая не всегда отражает действительную прокаливаемость стали в изделии. Полосы прокаливаемости для углеродистой и легированной сталей, содержащих Внутренние напряжения в закаленной стали. Внутренние напряжения при закалке стали возникают вследствие неравномерного охлаждения поверхности и сердцевины изделия (эти
Рис. 138. Схема эпюры остаточных напряжений: а — тепловые; б - структурные; в — суммарные напряжения называют тепловыми), увеличения объема и неоднородности протекания мартенситного превращения по объему изделия. Напряжения, вызываемые этим превращением, называют структурными, или фазовыми. Неодинаковое распределение температур по сечению изделия при быстром охлаждении сопровождается и неравномерным изменением объема. Поверхностные слои сжимаются быстрее, чем внутренние. Однако сжатию поверхностных слоев препятствуют внутренние слои. Это приводит к тому, что в поверхностных слоях образуются временные (т. е. исчезающие после снятия нагрузки) растягивающие, а во внутренних слоях — сжимающие напряжения. После того как поверхность охладится и изменение объема прекратится, сердцевина еще будет испытывать тепловое сжатие. Вследствие этого напряжения начнут уменьшаться и в некоторый момент произойдет изменение знака напряжений на поверхности и в сердцевине. После окончательного охлаждения на поверхности получаются остаточные напряжения сжатия, а в сердцевине — напряжения растяжения (рис. 138, а). Появление остаточных напряжений является результатом того, что временные напряжения вызывают не только упругую, но и в той или иной степени неодновременную и неодинаковую пластическую деформацию слоев по сечению. Рассмотрим теперь условия образования структурных напряжений при полной прокаливаемости. При этом тепловые напряжения условно учитываться не будут. По достижении при закалке температур ниже точки Структурные напряжения относительно тепловых изменяются в обратном порядке. В результате мартенситного превращения на поверхности образуются остаточные напряжения растяжения, а в сердцевине — напряжения сжатия (рис. 133, б). Эти остаточные напряжения, как и тепловые, возникают в результате появления под действием временных напряжений не только упругой, но и неодинаковой по сечению остаточной деформации. При закалке стали одновременно возникают как тепловые, так и структурные напряжения, которые суммируют (рис. 138, в). В данной схеме тепловые напряжения превышали структурные, поэтому на поверхности образовались напряжения сжатия. Однако в зависимости от соотношения между тепловыми и структурными напряжениями могут получиться различные эпюры суммарных напряжений, а в поверхностных слоях напряжения могут иметь разный знак и различную величину. Во многих случаях величина фазовых напряжений больше, чем величина тепловых. Остаточные напряжения, полученные после закалки, не характеризуют напряжения, возникающие при охлаждении (нагреве) стали. Остаточные напряжения всегда меньше временных напряжений, образующихся в процессе охлаждения. Если величина напряжений превышает сопротивление отрыву и металл мало пластичен, то напряжения не могут быть уменьшены пластической деформацией. Это вызывает образование трещин. Наиболее опасны при этом растягивающие напряжения на поверхности, которые способствуют образованию трещин и снижают предел выносливости стали. Растягивающие напряжения возникают в основном вследствие структурных напряжений, которые нужно стремиться уменьшить. Структурные напряжения тем больше, чем выше температура закалки и скорость охлаждения в интервале температур Способы закалки. Наиболее широко применяют закалку в одном охладителе (см. рис. 131). Такую закалку называют непрерывной. Во многих случаях, особенно для изделий сложной формы и при необходимости уменьшения деформации, применяют и другие способы закалки. Прерывистая закалка (в двух средах). Изделие, закаливаемое по этому способу, сначала быстро охлаждают в воде до температуры несколько выше точки Мн, а затем быстро переносят в менее интенсивный охладитель (например, в масло или на воздух), в котором оно охлаждается до 20 °С. В результате переноса во вторую закалочную среду уменьшаются внутренние напряжения, которые возникли бы при быстром охлаждении в одной среде (воде), в том числе и в области температур мартенситного превращения. Закалка с самоотпуском. В этом случае охлаждение изделия в закалочной среде прерывают, с тем чтобы в сердцевине изделия сохранилось еще некоторое количество теплоты. Под действием теплообмена температура в более сильно охлаждающихся поверхностных слоях повышается и сравнивается с температурой сердцевины. Тем самым происходит отпуск поверхности стали (самоотпуск).
Рис. 139. Схема ступенчатой закалки эвтектоидной стали, содержащей 0,8 % С (а), и изотермической закалки легированной стали (б) Закалку с самоотпуском применяют, например, для таких инструментов, как зубила, кувалды, слесарные молотки, керны, которые работают с ударными нагрузками и должны сочетать высокую твердость на поверхности с повышенной вязкостью в сердцевине. Ступенчатая закалка. При выполнении закалки по этому способу (рис. 139, а) сталь после нагрева до температуры закалки охлаждают в среде, имеющей температуру несколько выше точки Мартенситное превращение протекает при охлаждении на воздухе, но менее полно, чем при непрерывной закалке, вследствие чего сталь сохраняет больше остаточного аустенита. При ступенчатой закалке уменьшаются объемные изменения вследствие присутствия большого количества остаточного аустенита и возможности самоотпуска мартенсита, коробление в результате протекания мартенеитного превращения почти одновременно во всех участках изделия и опасность появления трещин. Во время фазовых превращений, в том числе и мартенеитного, снижается прочность стали и повышается пластичность. Это своеобразное разупрочнение, наблюдающееся только в момент превращения (в данном случае мартенеитного), используется при ступенчатой закалке для правки изделий, склонных к короблению. Правку (чаще под прессом) выполняют в период охлаждения изделий на воздухе после извлечения их из закалочной среды. Ступенчатую закалку чаще применяют для инструмента из углеродистых сталей диаметром не более 8—10 мм (см. с. 350). Скорость охлаждения более крупного инструмента в среде с температурой выше точки Изотермическая закалка. Закалку по этому способу (рис. У большинства легированных сталей распад аустенита в промежуточной области не идет до конца. Если аустенит, не распавшийся при изотермической выдержке, не претерпевает мартенситного превращения при дальнейшем охлаждении, то сталь получает структуру: бейнит Если же большая часть аустенита, не распавшегося после окончания промежуточного превращения, при последующем охлаждении претерпевает мартенситное превращение, то изотермической закалкой нельзя получить высокие механические свойства. В этом случае резко снижается сопротивление хрупкому разрушению. Конструкционные легированные стали В качестве охлаждающей среды при ступенчатой и изотермической закалке чаще применяют расплавленные соли в интервале температур скорости охлаждения в области температур перлитного превращения. Скорость охлаждения возрастает при температуре 400-450 °С в 4—6 раз, а при температуре 300 °С - в 2 раза. Охлаждение в расплавах едких щелочей, если предварительно детали нагревались в расплавленных солях (т. е. солях, не вызывающих окисления), позволяет получить чистую поверхность светло-серого цвета. Закалку по этому способу называют светлой. Обработка стали холодом. В закаленной стали, особенно содержащей более Для уменьшения количества остаточного аустенита в закаленной стали применяют обработку холодом, заключающуюся в охлаждении закаленной стали до температур ниже нуля. Понижение температуры до точки Выдержка стали после закалки при нормальной температуре более Обработку холодом используют главным образом для измерительных инструментов, для пружин и деталей из цементируемых высоколегированных сталей, сохраняющих много аустенита после закалки.
|
1 |
Оглавление
|